Abstract

Impingement cooling is one of the powerful cooling methods in high-temperature devices. For the gas turbine applications, impingement cooling is commonly applied in the transition piece of a combustor and in the leading edge, suction and pressure sides of a turbine blade/vane. In the suction side and pressure side, impingement cooling is applied as a form of an array jet. However, due to the small gap between the jet hole and target surface, the wall jet faces a crossflow inside of the gap. This crossflow has an adverse effect on the jets and deteriorates the heat/mass transfer performance. Therefore, several studies have been conducted to minimize the crossflow effect. The present study also investigated the effect of crossflow reduction in the gap by having a castellated hole plate. The heat/mass transfer was measured using the naphthalene sublimation method. Heat/mass transfer data are compared among three different cases. One is the baseline case which is simple array impinging jets. Others are the castellated cases with and without rib structures on the target wall. Jet-to-jet spacing(s/d) and jet-to-target spacing(z/d) are selected as geometrical variables. Also, the experiments were conducted for the Reynolds numbers (based on jet hole diameter) of 5,000, 15,000, and 30,000. The baseline case was named as B case, and the castellated case without rib structure as C case and with rib structure as CR case. Both C and CR cases showed the crossflow reduction effect and resulted high and similar Nusselt number values.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging gas Jets and Solid Surfaces
,”
Adv. Heat Mass Transfer
,
13
, pp.
1
60
.
2.
Downs
,
S. J.
, and
James
,
E. H.
,
1987
, “
Jet Impingement Heat Transfer-A Literature Survey
,” ASME Paper No. 87-HT-35.
3.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
4.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
5.
Gardon
,
R.
,
1962
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,”
Int. Dev. Heat Transfer
, pp.
454
460
.
6.
Garimella
,
S. V.
, and
Schroeder
,
V. P.
,
2001
, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
165
172
.
7.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
J. Eng. Power
,
92
(
1
), pp.
73
82
.
8.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement WITH Crossflow: Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” NASA-CR-3373.
9.
Behbahani
,
A. I.
, and
Goldstein
,
R. J.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
J. Eng. Power
,
105
(
2
), pp.
354
360
.
10.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
J. Eng. Power
,
94
(
1
), pp.
35
41
.
11.
Ren
,
Z.
,
Buzzard
,
W. C.
,
Ligrani
,
P. M.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2017
, “
Impingement Jet Array Heat Transfer: Target Surface Roughness Shape, Reynolds Number Effects
,”
J. Thermophys. Heat Transfer
,
31
(
2
), pp.
346
357
.
12.
Buzzard
,
W. C.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2017
, “
Influences of Target Surface Small-Scale Rectangle Roughness on Impingement Jet Array Heat Transfer
,”
Int. J. Heat Mass Transfer
,
110
, pp.
805
816
.
13.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1996
, “
Effect of Hole Arrangements on Impingement/Effusion Cooling
,”
Proceeding of 3rd KSME-JSME Thermal Engineering Conference
,
Gyeongju, South Korea
,
Oct. 20–23
, pp.
71
76
.
14.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
15.
Rhee
,
D. H.
,
Yoon
,
P.-H.
, and
Cho
,
H. H.
,
2003
, “
Local Heat/Mass Transfer and Flow Characteristics of Array Impinging Jets with Effusion Holes Ejecting Spent air
,”
Int. J. Heat Mass Transfer
,
46
(
6
), pp.
1049
1061
.
16.
Rhee
,
D. H.
,
Nam
,
Y. W.
, and
Cho
,
H. H.
,
2004
, “
Local Heat/Mass Transfer with Various rib Arrangements in Impingement/Effusion Cooling System with Crossflow
,”
ASME J. Turbomach.
,
126
(
4
), pp.
615
626
.
17.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2006
, “
Heat/Mass Transfer with Circular pin Fins in Impingement/Effusion Cooling System with Crossflow
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
728
737
.
18.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Effects of fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling with Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
12
), pp.
1697
1707
.
19.
Zhao
,
Q.-Y.
,
Chung
,
H.
,
Choi
,
S. M.
, and
Cho
,
H. H.
,
2016
, “
Effect of Guide Wall on jet Impingement Cooling in Blade Leading Edge Channel
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
525
531
.
20.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2007
, “
Comparing Extended Port and Corrugated Wall jet Impingement Geometry for Combustor Liner Backside Cooling
,” ASME Paper No. GT2007-27390.
21.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
22.
Dhanasegaran
,
R.
, and
Pugazhendhi
,
S.
,
2017
, “
Computational Study of Flow and Heat Transfer with Anti Cross-Flows (ACF) Jet Impingement Cooling for Different Heights of Corrugate
,” ASME Paper No. HT2017-4783.
23.
Hwang
,
B. J.
,
Kim
,
S. H.
,
Joo
,
W. G.
, and
Cho
,
H. H.
,
2017
, “
A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet
,”
Trans. Korean Soc. Mech. Eng. B
,
41
(
5
), pp.
329
339
.
24.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
.
25.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sprake
,
C. H. S.
,
1975
, “
The Vapour Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
(
12
), pp.
1173
1176
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.