Abstract

Hot gas ingestion into the turbine rim seal cavity is an important concern for engine designers. To prevent ingestion, rim seals use high-pressure purge flow; however, the penalty is that excessive use of the purge flow decreases engine thermal efficiency. In this paper, a one-stage turbine operating at engine-representative conditions was used to study the effect of steady and time-resolved under-platform cavity temperatures and pressures across a range of coolant flowrates in the presence of vane trailing edge (VTE) flow. This study correlates time-resolved pressure with time-resolved temperature to identify primary frequencies driving ingestion. At certain flowrates, the time-resolved pressures are out of phase with the temperatures, indicating ingestion. Measurements from high-frequency response pressure sensors in the rim seal and vane platform were also used to determine rotational speed and quantity of large-scale structures (cells). In a parallel effort, a computational model using Unsteady Reynolds-averaged Navier–Stokes (URANS) was applied to determine swirl ratio in the rim seal cavity and time-resolved rim sealing effectiveness. The experimental results confirm that at low purge flowrates, the VTE flow influences the unsteady flow field by decreasing pressure unsteadiness in the rim seal cavity. Results show an increase in purge flow increases the number of unsteady large-scale structures in the rim seal and decreases their rotational speed. However, VTE flow was shown to not significantly change the cell speed and count in the rim seal. Simulations point to the importance of the large-scale cell structures in influencing rim sealing unsteadiness, which is not captured in current rim sealing predictive models.

References

1.
Air Transport Action Action Group
,
2018
, Aviation Benefits Beyond Borders, https://aviationbenefits.org/media/166344/abbb18_full-report_web.pdf
2.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2017-63205.
3.
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Grover
,
E. A.
, and
Monge-Concepción
,
I.
,
2019
, “
Scaling Sealing Effectiveness in a Stator–Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
4.
Clark
,
K. P.
,
Johnson
,
D.
,
Thole
,
K. A.
,
Robak
,
C.
,
Barringer
,
M. D.
, and
Grover
,
E.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.
5.
Siroka
,
S.
,
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2021
, “
Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow
,”
Proceedings of the ASME Turbo Expo 2021
, Paper No. GT2021-59285.
6.
Monge-Concepción
,
I.
,
Siroka
,
S.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Unsteady Turbine Rim Sealing and Vane Trailing Edge Flow Effects
,”
Proceedings of the ASME Turbo Expo 2021
, Paper No. GT2021-59273.
7.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
Proceedings of the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Paper No. AIAA 94-2703.
8.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
9.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
10.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
228
(
5
), pp.
491
507
.
11.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2017
, “
Performance of Rim-Seals in Upstream and Downstream Cavities Over a Range of Flow Coefficients
,”
Int. J. Turbomach. Propuls. Power
,
2
(
4
), p.
21
.
12.
Patinios
,
M.
,
Ong
,
I. L.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2018
, “
Influence of Leakage Flows on Hot Gas Ingress
,”
Proceedings of the Turbo Expo 2018
, Paper No. GT2018-75071.
13.
Horwood
,
J. T. M.
,
Hualca
,
F. P. T.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2018
, “
Unsteady Computation of Ingress Through Turbine Rim Seals
,”
Proceedings of the ASME Turbo Expo 2018
, Paper No. GT2018-75321.
14.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
Proceedings of the Turbo Expo 2009
, Paper No. GT2009-59965.
15.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
16.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometry
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.
17.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
18.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
Devito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
Proceedings of the Turbo Expo 2004
, Paper No. GT2004-53829.
19.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J. W.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
20.
Wang
,
C.-Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2014
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
21.
Hualca
,
F. P. T.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021020
.
22.
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2020
, “
Evaluating the Effect of Vane Trailing Edge Flow on Turbine Rim Sealing
,”
ASME J. Turbomach.
,
142
(
8
), p.
081001
.
23.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of the ASME Turbo Expo 2014
, Paper No. GT2014-25570.
24.
Robak
,
C.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion With Axial Purge Flow Injection
,”
Proceedings of the Turbo Expo 2019
, Paper No. GT2019-91807.
25.
Siroka
,
S.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Chana
,
K.
,
Haldeman
,
C. W.
, and
Anthony
,
R. J.
,
2020
, “
Comparison of Thin Film Heat Flux Gauge Technologies Emphasizing Continuous-Duration Operation
,”
ASME J. Turbomach.
,
142
(
9
), p.
091001
.
26.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc
,
New York
.
27.
Siemens PLM Software
,
2017
, “STAR-CCM+ 11.06,” Plano, TX.
28.
ANSYS
,
2017
, “ANSYS Fluent 18.2,” Canonsburg, PA.
29.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals-Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
30.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals-Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
31.
DeShong
,
E. T.
,
Peters
,
B.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Paynabar
,
K.
, and
Gebraeel
,
N.
,
2021
, “
Correlating Time-Resolved Pressure Measurements with Rim Sealing Effectiveness for Real-Time Turbine Health Monitoring
,”
ASME Turbo Expo 2021
, Paper No. GT2021-59586.
32.
Cameron
,
J. D.
,
2007
,
“Stall Inception in a High-Speed Axial Compressor,” PhD. Dissertation, University of Notre Dame, IN
.
33.
Berdanier
,
R. A.
,
Smith
,
N. R.
,
Young
,
A. M.
, and
Key
,
N. L.
,
2018
, “
Effects of Tip Clearance on Stall Inception in a Multistage Compressor
,”
J. Propul. Power
,
34
(
2
), pp.
308
317
.
34.
Horwood
,
J. T. M.
,
Hualca
,
F. P. T.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.
You do not currently have access to this content.