Abstract

In a boundary layer ingesting (BLI) propulsion system, the fan blades need to operate continuously under large-scale inflow distortion. The distortion will lead to serious aerodynamic losses in the fan, degrading the fan performance and the overall aerodynamic benefits of the aircraft. Therefore, in the preliminary design of a BLI propulsion system, it is necessary to evaluate the influence of the fuselage boundary layer under different flight conditions on the fan aerodynamic performance. However, a gap exists in the current computational methods for BLI fan performance evaluations. The full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) simulations can provide reliable predictions but are computationally expensive for design iterations. The low-order computational methods are cost-efficient but rely on the loss models for accurate prediction. The conventional empirical or physics-based loss models show notable limitations under complex distortion-induced off-design working conditions in a BLI fan, especially in the rotor tip region, compromising the reliability of the low-order computational methods. To balance the accuracy and cost of loss prediction, the paper proposes a data-driven tip flow loss prediction framework for a BLI fan. It employs a neural network to build a surrogate model to predict the tip flow loss at complex non-uniform aerodynamic conditions. Physical understandings of the flow features in the BLI fan are integrated into the data-driven modeling process, to further reduce the computational cost and improve the method’s applicability. The data-driven prediction method shows good accuracy in predicting the overall values and radial distributions of fan rotor tip flow loss under various BLI inflow distortion conditions. Not only does it have higher accuracy than the conventional physics-based loss models but also needs much less computational time than the full-annulus time-accurate simulations. The present work has demonstrated a significant potential of data-driven approaches in complex aerodynamic loss modeling and will contribute to future BLI fan design.

References

1.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2015
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
AIAA J. Propul. Power
,
31
(
3
), pp.
843
850
.
2.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Hall
,
D. K.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
, et al
,
2017
, “
Boundary Layer Ingestion Benefit of the D8 Transport Aircraft
,”
AIAA J.
,
55
(
11
), pp.
3693
3708
.
3.
Hardin
,
L. W.
,
Tillman
,
G.
,
Sharma
,
O. P.
,
Berton
,
J.
, and
Arend
,
D. J.
,
2012
, “
Aircraft System Study of Boundary Layer Ingesting Propulsion
,” AIAA Paper No. AIAA-2012-3993.
4.
Lu
,
H.
,
Yang
,
Z.
,
Pan
,
T.
, and
Li
,
Q.
,
2019
, “
Non-Uniform Stator Loss Reduction Design Strategy in a Transonic Axial-Flow Compressor Stage Under Inflow Distortion
,”
Aerosp. Sci. Technol.
,
92
, pp.
347
362
.
5.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S. A.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.
6.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
7.
Giuliani
,
J. E.
, and
Chen
,
J.
,
2016
, “
Fan Response to Boundary-Layer Ingesting Inlet Distortions
,”
AIAA J.
,
54
(
10
), pp.
3232
3243
.
8.
Zhang
,
W.
, and
Vahdati
,
M.
,
2019
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
011011
.
9.
Valencia
,
E.
,
Hidalgo
,
V.
,
Nalianda
,
D.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2017
, “
Discretized Miller Approach to Assess Effects on Boundary Layer Ingestion Induced Distortion
,”
Chin. J. Aeronaut.
,
30
(
1
), pp.
235
248
.
10.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
11.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
J. Basic Eng.
,
81
(
3
), pp.
387
397
.
12.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
,
98
(
3
), pp.
411
424
.
13.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
14.
Miller
,
G. R.
,
Lewis
,
G. W.
, Jr.
, and
Hartmann
,
M. J.
,
1961
, “
Shock Losses in Transonic Compressor Blade Rows
,”
J. Eng. Power
,
83
(
3
), pp.
235
241
.
15.
König
,
W. M.
,
Hennecke
,
D. K.
, and
Fottner
,
L.
,
1996
, “
Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part II—A Model for Supersonic Flow
,”
ASME J. Turbomach.
,
118
(
1
), pp.
81
87
.
16.
Bloch
,
G. S.
,
1996
, “
Flow Loss in Supersonic Compressor Cascades
,”
Ph.D. thesis
.
Virginia Polytechnic Institute and State University, Blacksburg, VA
.
17.
Howell
,
A. R.
,
1945
, “
Fluid Dynamics of Axial Compressors
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
153
(
1
), pp.
441
452
.
18.
Hearsey
,
R. M.
,
1994
,
Program HT0300 NASA 1994 Version. Doc. No. D6-81569TN, Volumes 1 and 2
,
The Boeing Company
.
19.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
J. Basic Eng.
,
92
(
3
), pp.
467
480
.
20.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
21.
Howard
,
M. A.
, and
Gallimore
,
S. J.
,
1993
, “
Viscous Throughflow Modeling for Multistage Compressor Design
,”
ASME J. Turbomach.
,
115
(
2
), pp.
296
304
.
22.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,” ASME Paper No. GT2014-26142.
23.
Yang
,
Z.
,
Lu
,
H.
,
Pan
,
T.
, and
Li
,
Q.
,
2021
, “
Numerical Investigation on the Influences of Boundary Layer Ingestion on Tip Leakage Flow Structures and Losses in a Transonic Axial-Flow Fan
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111207
.
24.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.
25.
Hui
,
X.
,
Bai
,
J.
,
Wang
,
H.
, and
Zhang
,
Y.
,
2020
, “
Fast Pressure Distribution Prediction of Airfoils Using Deep Learning
,”
Aerosp. Sci. Technol.
,
105
, p.
105949
.
26.
Pazireh
,
S.
, and
Defoe
,
J. J.
,
2021
, “
A New Loss Generation Body Force Model for Fan/Compressor Blade Rows: An Artificial-Neural-Network Based Methodology
,”
Int. J. Turbomach. Propul. Power
,
6
(
1
), pp.
1
23
.
27.
Ferrer-Vidal
,
L. E.
,
Schneider
,
M.
,
Allegretti
,
A.
, and
Pachidis
,
V.
,
2019
, “
A Loss and Deflection Model for Compressor Blading at High Negative Incidence
,”
ASME J. Turbomach.
,
141
(
12
), p.
121001
.
28.
Fei
,
J.
,
Zhao
,
N.
,
Shi
,
Y.
,
Feng
,
Y.
, and
Wang
,
Z.
,
2016
, “
Compressor Performance Prediction Using a Novel Feed-Forward Neural Network Based on Gaussian Kernel Function
,”
Adv. Mech. Eng.
,
8
(
1
), pp.
1
14
.
29.
Leylek
,
Z.
, and
Neely
,
A. J.
,
2017
, “
Global Three-Dimensional Surrogate Modeling of Gas Turbine Aerodynamic Performance
,” ASME Paper No. GT2017-63920.
30.
Zhao
,
Y.
,
Hu
,
Q.
,
Xu
,
J.
,
Li
,
B.
,
Huang
,
G.
, and
Pan
,
Y.
,
2018
, “
A Robust Extreme Learning Machine for Modeling a Small-Scale Turbojet Engine
,”
Appl. Energy
,
218
, pp.
22
35
.
31.
Zhang
,
Y.
,
Gong
,
C.
,
Fang
,
H.
,
Su
,
H.
,
Li
,
C.
, and
Da Ronch
,
A.
,
2019
, “
An Efficient Space Division-Based Width Optimization Method for RBF Network Using Fuzzy Clustering Algorithms
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
461
480
.
32.
Zhang
,
W.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speeds
,”
Aerosp. Sci. Technol.
,
98
, p.
105668
.
33.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor,” NASA Technical Paper 2879.
34.
Arend
,
D. J.
,
Wolter
,
J. D.
,
Hirt
,
S. M.
,
Provenza
,
A. J.
,
Gazzaniga
,
J. A.
,
Cousins
,
W. T.
,
Hardin
,
L. W.
, and
Sharma
,
O. P.
,
2017
, “
Experimental Evaluation of an Embedded Boundary Layer Ingesting Propulsor for Highly Efficient Subsonic Cruise Aircraft
,” AIAA Paper No. AIAA-2017-5041.
35.
SAE
,
1983
, “
Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines
,” AIR1419.
36.
Gunn
,
E. J.
,
Tooze
,
S. E.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2013
, “
An Experimental Study of Loss Sources in a Fan Operating With Continuous Inlet Stagnation Pressure Distortion
,”
ASME J. Turbomach.
,
135
(
5
), p.
051002
.
37.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2020
, “
Scaling of Incidence Variations With Inlet Distortion for a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
142
(
2
), p.
021003
.
38.
Center
,
L.
,
Johnsen
,
I. A.
, and
Bullock
,
R. O.
,
1956
, “
Aerodynamic Design of Axial-Flow Compressors
,” NASA Technical Report No. NASA SP-36.
39.
Yong
,
Z.
,
2008
, “
Investigations on Off-Design Performance Computation and Predicting Methods of Inlet Flow Distortion for Fan/Compressor
,”
Ph.D. thesis
,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
.
40.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1976
,
Gas Dynamics
, Vol. 1,
John Wiley & Sons Inc.
,
New York
.
You do not currently have access to this content.