Abstract

Diffusion shaped holes are widely used on aero-engine turbine blades for film cooling. The effect of the spanwise-expansion angle and spanwise width of the hole exit on the film cooling effectiveness of diffusion shaped holes was investigated in this study. The film cooling effectiveness was obtained through the pressure-sensitive paint (PSP) technique on a plate model at five momentum ratios (0.11, 0.43, 0.97, 1.73, and 2.71). A numerical simulation was performed to analyze the flow mechanism. The laid-back fan-shaped (LBFS) holes and the fan-shaped holes with three spanwise-expansion angles (FS-A: 7 deg, 11 deg, and 15 deg) and with three spanwise widths of the hole exits (FS-B: 1.7d, 2.3d, and 3.4d) were used for the study. The results revealed that the film cooling effectiveness of fan-shaped holes (FS-A) increases monotonically as the spanwise-expansion angle increases, while the film cooling effectiveness of the LBFS holes increases first and then decreases as the spanwise-expansion angle increases. However, the film cooling effectiveness of the two kinds of holes (LBFS and FS-B) both increase first and then decrease with the increase of the spanwise width of hole exit. The mainstream intrusion occurred at the same spanwise width of the hole exit of 3.4d for both kinds of holes. The laid-back fan-shaped hole possessed high resistance to cooling performance decline. The importance of the spanwise width of the hole exit as a key parameter was emphasized in this study.

References

1.
Zhang
,
J. Z.
,
Zhang
,
S. C.
,
Wang
,
C. H.
, and
Tan
,
X. M.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
2.
Gartshore
,
I.
,
Salcudean
,
M.
, and
Hassan
,
I.
,
2001
, “
Film Cooling Injection Hole Geometry: Hole Shape Comparison for Compound Cooling Orientation
,”
AIAA J.
,
39
(
8
), pp.
1493
1499
.
3.
Ye
,
L.
,
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
1
), pp.
1
15
.
4.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
5.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
6.
Goldstein
,
R. J.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
2015
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
7.
Makki
,
Y. H.
, and
Jakubowski
,
G.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA
,
Boston, MA
,
June 2–4
, p.
1326
.
8.
Furukawa
,
T.
, and
Ligrani
,
P. M.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
AIAA J. Thermophys. Heat Transfer
,
16
(
2
), pp.
228
237
.
9.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2017: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20, 2014
, American Society of Mechanical Engineers, p. V05BT13A036.
10.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2018
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME J. Turbomach.
,
140
(
5
), p.
051002
.
11.
Haydt
,
S.
, and
Lynch
,
S.
,
2019
, “
Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
141
(
4
), p.
041005
.
12.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2019
, “
Film Cooling Measurements for a Laidback Fan-Shaped Hole-Effect of Coolant Crossflow on Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
141
(
4
), p.
041006
.
13.
Christian
,
S.
,
Achmed
,
S.
, and
Sigmar
,
W.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
14.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME Turbo Expo 1997: Power for Land, Sea, and Air
,
Orlando, FL
,
June 2–5
, American Society of Mechanical Engineers, p. V003T09A007.
15.
Agarwal
,
S.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Odier
,
N.
, and
Dombard
,
J.
,
2021
, “
Analysis of the Unsteady Flow Field Inside a Fan-Shaped Cooling Hole Predicted by Large-Eddy Simulation
,”
ASME J. Turbomach.
,
143
(
3
), p.
031011
.
16.
Kang
,
Y. S.
,
Jun
,
S.
, and
Rhee
,
D.
,
2020
, “
Large Eddy Simulations on Fan Shaped Film Cooling Hole With Various Inlet Turbulence Generation Methods
,”
ASME Turbo Expo 2020: Power for Land, Sea, and Air
,
Virtual, Online
,
Sept. 21–25
, American Society of Mechanical Engineers, p. V07BT12A062.
17.
Kyle
,
R. V.
, and
Wright
,
L. M.
,
2017
, “
Effect of Flow Acceleration on Mainstream-to-Coolant Flow Interaction for Round and Shaped Film Cooling Holes
,”
ASME Turbo Expo 2017: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
, American Society of Mechanical Engineers, p. V05CT19A013.
18.
Gritsch
,
M.
,
Colban
,
W.
,
Schar
,
H.
, and
Dobbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
19.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
20.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Turbomach.
,
122
(
2
), pp.
224
232
.
21.
Zuniga
,
H. A.
, and
Krishnan
,
V.
,
2008
, “
Effect of Non-Symmetrical lateral Diffusion on Film Cooling Effectiveness From a Row of Shaped Holes
,”
AIAA Joint Propulsion Conference and Exhibit, ABP-16, AIAA
,
Hartford, CT
,
July 21–23
, p.
5165
.
22.
Hyun
,
J. S.
,
Young
,
J. K.
, and
Hyun
,
C. L.
,
2019
, “
Optimization of the Configuration of the Laidback Fan-Shaped Film Cooling Hole With a Spanwise-Expansion Angle of 10 Degrees
,”
Appl. Therm. Eng.
,
153
(
5
), pp.
379
389
.
23.
Liu
,
T.
, and
Sullivan
,
J. P.
,
2005
,
Pressure and Temperature Sensitive Paints
,
Springer
,
Berlin
, Chapter. 1, p.
1
.
24.
McNamara
,
L. J.
,
Rutledge
,
J. L.
,
Fischer
,
J. P.
, and
Polanka
,
M. D.
,
2021
, “
Scaling Considerations for Thermal and Pressure Sensitive Paint Methods Used to Determine Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
143
(
1
), p.
011004
.
25.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2021
, “
Film Cooling Effectiveness From Two Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
4
), p.
042202
.
26.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2005
, “
Film Cooling Effectiveness From a Single Scaled-Up Fan-Shaped Hole: A CFD Simulation of Adiabatic and Conjugate Heat Transfer Models
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
, American Society of Mechanical Engineers, pp.
431
441
.
27.
Na
,
S.
,
Zhu
,
B.
, and
Bryden
,
M.
,
2006
, “
CFD Analysis of Film Cooling
,”
AIAA Aerospace Sciences Meeting and Exhibit, AIAA
,
Reno, NV
,
Jan. 9–12
, p.
22
.
28.
Liu
,
C. L.
, and
Zhu
,
H. R.
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6208
6218
.
29.
Wei
,
H.
,
Ai
,
J. L.
,
Zu
,
Y. Q.
, and
Ding
,
L.
,
2019
, “
Heat Transfer Characteristics of Fan-Shaped Hole Effusion Cooling for a Constant Spanwise Width of the Hole Exit-Numerical Simulation and Experimental Validation
,”
Appl. Therm. Eng.
,
160
(
9
), p.
113978
.
30.
Lee
,
K.
, and
Kim
,
K.
,
2010
, “
Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2996
3005
.
You do not currently have access to this content.