Abstract

This paper investigated the film-cooling effectiveness of diffusion slot holes in a turbine nozzle guide vane. The pressure-sensitive paint measurement technique was employed to obtain the film-cooling effectiveness at a density ratio of DR = 1.5. The mainstream Reynolds number based on the axial chord length and the exit velocity was 6 × 105. The mainstream turbulence intensity was approximately 3.7%. Three diffusion slot hole geometries with cross-sectional aspect ratios (ASs) of 2.3, 3.4, and 4.9 were tested and compared with a typical fan-shaped hole. The experiments were performed at three typical hole row locations on the pressure surface (PS) and suction surface (SS). The average blowing ratios varied from M = 0.5 to 2.5. The results showed that throughout the blowing ratio range, on the PS, a substantially higher film-cooling effectiveness than the fan-shaped hole is always obtained from the diffusion slot hole with a large aspect ratio (AS = 4.9); on the SS, the diffusion slot hole with a small AS (AS = 2.3). The influence of hole row positioning is inconsistent for diffusion slot holes with different ASs. The diffusion slot hole is less affected by the PS when the AS is moderate and less affected by the SS when the AS is large. The film-cooling effectiveness of the diffusion slot holes is basically the lowest where the PS has a maximum concave curvature and the highest where the SS has a large favorable pressure gradient.

References

1.
Escudier
,
M. P.
, and
Whltelaw
,
J. H.
,
1968
, “
The Influence of Strong Adverse Pressure Gradients on the Effectiveness of Film Cooling
,”
Int. J. Heat Mass Transfer
,
11
(
8
), pp.
1289
1292
.
2.
Launder
,
B. E.
, and
York
,
J.
,
1974
, “
Discrete-Hole Cooling in the Presence of Free Stream Turbulence and Strong Favorable Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
17
(
11
), pp.
1403
1409
.
3.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1991
, “
Film Cooling in the Presence of Mainstream Pressure-Gradients
,”
ASME J. Turbomach.
,
113
(
3
), pp.
484
492
.
4.
Ligrani
,
P.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2013
, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense Hole Arrays at Different Hole Angles, Contraction Ratios, and Blowing Ratios
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031707
.
5.
Yang
,
C. S.
,
Lin
,
C. L.
, and
Gau
,
C.
,
2009
, “
Film Cooling Performance and Heat Transfer Over an Inclined Film-Cooled Surface at Different Convergent Angles With Respect to Highly Turbulent Mainstream
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
167
177
.
6.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1991
, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
(
3
), pp.
472
478
.
7.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
,
2000
, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2973
2987
.
8.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Dittmaar
,
J.
, and
Weigand
,
B.
,
2001
, “
An Experimental Investigation of Film Cooling on a Convex Surface Subjected to Favorable Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
939
951
.
9.
Qin
,
Y. M.
,
Chen
,
P. T.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2016
, “
Effects of Wall Curvature and Streamwise Pressure Gradient on Film Cooling Effectiveness
,”
Appl. Therm. Eng.
,
107
, pp.
776
784
.
10.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
J. Eng. Power
,
100
(
3
), pp.
476
481
.
11.
Jiang
,
H. W.
, and
Han
,
J. C.
,
1996
, “
Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
327
333
.
12.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
(
4
), pp.
808
817
.
13.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
14.
Li
,
G. Q.
, and
Deng
,
H. W.
,
2011
, “
Experimental Investigation on Film Cooling Performance of Pressure Side in Annular Cascades
,”
J. Therm. Sci.
,
20
(
2
), pp.
119
126
.
15.
Li
,
S. J.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2013
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
), p.
061026
.
16.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
17.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J.-C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081701
.
18.
Narzary
,
D. P.
,
Liu
,
K.-C.
,
Rallabandi
,
A. P.
, and
Han
,
J.-C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
19.
Winka
,
J. R.
,
Anderson
,
J. B.
,
Boyd
,
E. J.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2014
, “
Convex Curvature Effects on Film Cooling Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
136
(
6
), p.
061015
.
20.
Liu
,
K.
,
Yang
,
S.-F.
, and
Han
,
J.-C.
,
2014
, “
Influence of Coolant Density on Turbine Blade Film-Cooling With Axial and Compound Shaped Holes
,”
ASME J. Heat Transfer
,
136
(
4
), p.
044501
.
21.
Nikparto
,
A.
, and
Schobeiri
,
M. T.
,
2017
, “
Experimental Investigation of Film-Cooling Effectiveness of a Highly Loaded Turbine Blade Under Steady and Periodic Unsteady Flow Conditions
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072201
.
22.
Chen
,
D.
,
Zhu
,
H.
,
Liu
,
C.
,
Li
,
H.
,
Li
,
B.
, and
Zhou
,
D.
,
2019
, “
Combined Effects of Unsteady Wake and Free-Stream Turbulence on Turbine Blade Film Cooling With Laid-Back Fan-Shaped Holes Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
133
, pp.
382
392
.
23.
Fu
,
Z. Y.
,
Zhu
,
H. R.
,
Cheng
,
L. J.
, and
Jiang
,
R.
,
2019
, “
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane
,”
J. Therm. Sci.
,
28
(
1
), pp.
145
157
.
24.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
,
2001
, “
Effect of Film-Hole Shape on Turbine-Blade Film-Cooling Performance
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
257
265
.
25.
Gao
,
Z. H.
,
Narzary
,
D. P.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2008
, “
Full-Coverage Film Cooling for a Turbine Blade With Axial-Shaped Holes
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
50
61
.
26.
Gao
,
Z. H.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.
27.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2010
, “
Film Cooling Performance of Converging Slot-Hole Rows on a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5232
5241
.
28.
Najafabadi
,
H. N.
,
Karlsson
,
M.
,
Kinell
,
M.
, and
Utriainen
,
E.
,
2015
, “
Film-Cooling Performance of a Turbine Vane Suction Side: The Showerhead Effect on Film-Cooling Hole Placement for Cylindrical and Fan-Shaped Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091005
.
29.
Li
,
W. H.
,
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2018
, “
Experimental Investigation of Wall Thickness and Hole Shape Variation Effects on Full-Coverage Film Cooling Performance for a Gas Turbine Vane
,”
Appl. Therm. Eng.
,
144
, pp.
349
361
.
30.
Moore
,
J. D.
,
Yoon
,
C.
, and
Bogard
,
D. G.
,
2020
, “
Surface Curvature Effects on Film Cooling Performance for Shaped Holes on a Model Turbine Blade
,”
ASME J. Turbomach.
,
142
(
11
), p.
111008
.
31.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Rouina
,
S.
,
Abba
,
L.
,
Iannone
,
M.
, and
Odemondo
,
V.
,
2021
, “
V-Shaped Holes for Full Coverage Film Cooling of a High-Pressure Nozzle Guide Vane
,”
ASME J. Turbomach.
,
143
(
11
), p.
111004
.
32.
Liu
,
C. L.
,
Zhang
,
F.
,
Zhang
,
S. Q.
,
Shi
,
Q. Q.
, and
Song
,
H.
,
2022
, “
Experimental Investigation of the Full Coverage Film Cooling Effectiveness of a Turbine Blade With Shaped Holes
,”
Chinese J. Aeronaut.
,
35
(
3
), pp.
297
308
.
33.
Zhang
,
W.
,
Li
,
F.
,
Jia
,
Z.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Zhang
,
Y.
,
2022
, “
Experimental Study on Performance Verification Test of Optimized Film Cooling Holes in a Linear Cascade
,”
Appl. Therm. Eng.
,
212
, p.
118574
.
34.
Wang
,
M. R.
,
Zhu
,
H. R.
,
Liu
,
C. L.
,
Guo
,
T.
,
Zhang
,
L.
, and
Li
,
N.
,
2022
, “
Numerical Analysis and Design Optimization on Full Coverage Film-Cooling for Turbine Guided Vane
,”
Eng. Appl. Comp. Fluid
,
16
(
1
), pp.
904
936
.
35.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
36.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
37.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
38.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
39.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
40.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
41.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
42.
Li
,
C.
,
An
,
B.
, and
Liu
,
J.
,
2022
, “
Effect of Coolant Crossflow on Film Cooling Effectiveness of Diffusion Slot Hole With and Without Ribs
,”
ASME J. Turbomach.
,
144
(
9
), p.
091005
.
43.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
, and
Dees
,
J. E.
,
2017
, “
Adiabatic Film Cooling Effectiveness Measurements Throughout Multi-Row Film Cooling Arrays
,”
ASME J. Turbomach.
,
139
(
10
), p.
101008
.
44.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2019
, “
Effects of Mainstream Turbulence Intensity and Coolant-to-Mainstream Density Ratio on Film Cooling Effectiveness of Multi-Row Diffusion Slot Holes
,”
ASME J. Heat Transfer
,
141
(
12
), p.
122001
.
You do not currently have access to this content.