Abstract

Efficient cooling is imperative for gas turbine blades that suffer from hot gas erosion. Cooling and flow characteristics of multi-channel wall jet structure combined with film holes for blade leading edge are numerically investigated through the Reynolds-averaged Navier–Stokes method in this paper. Several geometrical schemes with different rows and diameters of film holes were conducted, and the influences of the cooling air mass flow ratio of the first coolant supply cavity were also considered, which presented the detailed flow and cooling characteristics of wall jet and film composite cooling on conjugate heat transfer. The results implied that film extraction improves the overall cooling effectiveness compared with pure wall jet cooling. And the mainstream intrusion happens in some film holes at the bottom of blades, especially on the pressure side. The film-hole diameter can raise the mass flow ratio and enhance external thermal protection produced by cooling air, and it also affects the uniformity of film flow and the temperature gradient of some regions for turbine blades. Furthermore, the cooling performance and pressure loss are significantly influenced by the coolant mass flowrate of the first cooling air supply cavity. This study will offer a consultation for the design of film-hole structures for multi-channel wall jet cooling.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.
3.
Chi
,
Z. R.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
4.
Patil
,
V. S.
, and
Vedula
,
R. P.
,
2018
, “
Local Heat Transfer for Jet Impingement Onto a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects
,”
Exp. Therm. Fluid. Sci.
,
92
, pp.
375
389
.
5.
Liu
,
Z.
,
Feng
,
Z.
, and
Song
,
L. M.
,
2012
, “
Numerical Study on Flow and Heat Transfer Characteristics of Swirl Cooling on Leading Edge Model of Gas Turbine Blade
,”
Proceedings of the ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
,
June 6–10
, Vol. 5, pp.
1495
1504
.
6.
Liu
,
Z.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2013
, “
Numerical Study on the Effect of jet Slot Height on Flow and Heat Transfer of Swirl Cooling in Leading Edge Model for gas Turbine Blade
,”
Proceedings of the ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, Vol. 3a.
7.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
Proceedings of the ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, Vol. 3c.
8.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part I: Average Heat Transfer
,”
J. Eng. Power
,
102
(
4
), pp.
994
999
.
9.
Ekkad
,
S. V.
,
Huang
,
Y. Z.
, and
Han
,
J. C.
,
1999
, “
Impingement Heat Transfer on a Target Plate With Film Cooling Holes
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
522
528
.
10.
Taslim
,
M. E.
, and
Setayeshgar
,
L.
,
2001
, “
Experimental Leading-Edge Impingement Cooling Through Racetrack Crossover Holes
,”
Proceedings of the ASME Turbo Expo 2001
,
New Orleans, LA
,
June 4–7
, Vol. 3.
11.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
766
773
.
12.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
,
2002
, “
Experimental Racetrack Shaped jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,”
Proceedings of the ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
,
June 3–6
, Vol. 3, pp.
897
906
.
13.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
14.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
Proceedings of the ASME Turbo Expo 2005
,
Reno, NV
,
June 6–9
, Vol. 3, pp.
825
832
.
15.
Dobrowolski
,
L. D.
,
Bogard
,
D. G.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2009
, “
Numerical Simulation of a Simulated Film Cooled Turbine Blade Leading Edge Including Conjugate Heat Transfer Effects
,”
Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol. 9, pp.
2145
2156
.
16.
Ravelli
,
S.
,
Dobrowolski
,
L.
, and
Bogard
,
D. G.
,
2010
, “
Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Blade Leading Edge
,”
Proceedings of the ASME Turbo Expo 2010
,
Glasgow, UK
,
June 14–18
, Vol. 4, pp.
1655
1665
.
17.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
18.
Liu
,
Z.
,
Ye
,
L.
,
Wang
,
C.
, and
Feng
,
Z.
,
2014
, “
Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1432
1443
.
19.
Liu
,
Z.
,
Li
,
F.
,
Zhang
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2021
, “
Conjugate Heat Transfer Predictions on Combined Impingement and Film Cooling of a Blade Leading Edge Model
,”
Heat Transfer Eng.
,
42
(
16
), pp.
1363
1380
.
20.
Zhang
,
M.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2019
, “
Internal Heat Transfer of Film-Cooled Leading Edge Model With Normal and Tangential Impinging Jets
,”
Int. J. Heat Mass Transfer
,
139
, pp.
193
204
.
21.
Zhou
,
W.
,
Deng
,
Q.
,
He
,
W.
,
He
,
J.
, and
Feng
,
Z.
,
2020
, “
Conjugate Heat Transfer Analysis for Composite Cooling Structure Using a Decoupled Method
,”
Int. J. Heat Mass Transfer
,
149
, p.
119200
.
22.
Fan
,
X. J.
,
Du
,
C. H.
,
Li
,
L.
, and
Li
,
S.
,
2017
, “
“Numerical Simulation on Effects of Film Hole Geometry and Mass Flow on Vortex Cooling Behavior for gas Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,”
112
, pp.
472
483
.
23.
Li
,
L.
,
Du
,
C. H.
,
Chen
,
X. X.
,
Wang
,
J. F.
, and
Fan
,
X. J.
,
2018
, “
Numerical Study on Flow and Heat Transfer Behavior of Vortex and Film Composite Cooling
,”
J. Mech. Sci. Technol.
,
32
(
6
), pp.
2905
2917
.
24.
Wang
,
J.
,
Li
,
L.
,
Li
,
J.
,
Wu
,
F.
, and
Du
,
C.
,
2021
, “
Numerical Investigation on Flow and Heat Transfer Characteristics of Vortex Cooling in an Actual Film-Cooled Leading Edge
,”
Appl. Therm. Eng.
,
185
, p.
115942
.
25.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p.
011021
.
26.
Zhang
,
L. Z.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2017
, “Airfoil for Turbomachine and Airfoil Cooling Method,” U.S. Patent Publication No. US 2017/0248022 A1.
27.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Effects of Jetting Orifice Geometry Parameters and Channel Reynolds Number on Bended Channel Cooling for a Novel Internal Cooling Structure
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, Vol. 5a. http://dx.oi.org/10.1115/GT2019-90421
28.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
“Heat Transfer and Flow Mechanisms of Jetting Deflection in a Novel Bended Channel Cooling for Gas Turbine Blades,” IWHT Paper No. 2019-53.
29.
Deng
,
Q. H.
,
Wang
,
H. H.
,
He
,
W.
, and
Feng
,
Z. P.
,
2022
, “
Cooling Characteristic of a Wall Jet for Suppressing Crossflow Effect Under Conjugate Heat Transfer Condition
,”
Aerospace-Basel
,
9
(
1
). p.
29
.
30.
He
,
W.
,
Deng
,
Q. H.
,
Yang
,
G. Y.
, and
Feng
,
Z. P.
,
2021
, “
Effects of Turning Angle and Turning Internal Radius on Channel Impingement Cooling for a Novel Internal Cooling Structure
,”
ASME J. Turbomach.
,
143
(
9
), p.
091005
.
31.
Timko
,
L. P.
,
1984
,
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
, NASA-CR-168289.
32.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2010
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane With 90 Degree rib Turbulators
,”
Proceedings of the ASME Turbo Expo 2010
,
Glasgow, UK
,
June 14–18
, Vol. 4, pp.
447
456
.
You do not currently have access to this content.