Abstract

Simulations of the T106 low-pressure turbine linear cascade with incoming wakes have been conducted to demonstrate the suitability of the time-inclined method for retaining the exact blade count in scale-resolving simulations. The time-inclined method has been implemented into a high-order unstructured time-marching code based on the flux reconstruction method. The pitch ratio between the upstream incoming wakes and the cascade is not a small integer, and the time-inclined method is used to reduce simulations to a single-passage computational domain. Three-way comparisons have been generated: the solution of the direct periodic full domain, spanning several blade passages, is compared to the single-passage time-inclined solution and to a single-passage solution that approximates the pitch ratio to the nearest integer. Two sets of virtual experiments, which differ in modeling of the incoming perturbations, are reported. First, the immersed boundary approach is used to introduce a cascade of moving bars that act as the trailing edges of the preceding row and generate incoming wakes. The second set of simulations introduces wake-like perturbations at the inlet section of the computational domain. The present work shows that the time-inclined method, retaining the exact blade count, can produce very accurate results for turbulence-resolving simulations. Moreover, the time-inclined method outperforms the standard single-passage methodology in most of the variables of interest and is equivalent in the rest.

References

1.
Bolinches-Gisbert
,
M.
,
Cadrecha-Robles
,
D.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2020
, “
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
,”
ASME J. Turbomach.
,
142
(
3
), p.
031002
.
2.
Bolinches-Gisbert
,
M.
,
Cadrecha-Robles
,
D.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2021
, “
Numerical and Experimental Investigation of the Reynolds Number and Reduced Frequency Effects on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
,
143
(
2
), p.
021004
.
3.
Michelassi
,
V.
,
Wissink
,
J. G.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier-Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
4
), pp.
403
411
.
4.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
5.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
6.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
7.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Ong
,
J.
,
2018
, “
Highly Resolved Large Eddy Simulation Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
.
8.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions: Part II Loss Generation
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
.
9.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
10.
Lewis
,
D.
,
Moreau
,
S.
,
Jacob
,
M. C.
, and
Sanjosé
,
M.
,
2021
, “
ACAT1 Fan Stage Broadband Noise Prediction Using Large-Eddy Simulation and Analytical Models
,”
AIAA. J.
,
60
(
1
), pp.
1
21
.
11.
Polacsek
,
C.
,
Daroukh
,
M.
,
François
,
B.
, and
Barrier
,
R.
,
2022
, “
Zonal Detached Eddy Simulation of the Fan-Outlet Guide Vanes Stage of a Turbofan Engine: Part II—Broadband Noise Predictions
,”
ASME J. Turbomach.
,
144
(
11
), p.
111005
.
12.
Al-Am
,
J.
,
Clair
,
V.
,
Giauque
,
A.
,
Boudet
,
J.
, and
Gea-Aguilera
,
F.
,
2023
, “
Direct Noise Predictions of a 360 Full Fan Stage Using LES
,”
AIAA AVIATION 2023 Forum, American Institute of Aeronautics and Astronautics
,
San Diego, CA
,
June 12–16, 2023
.
13.
Erdos
,
J.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA. J.
,
15
(
11
), pp.
1559
1568
.
14.
Burgos
,
M.
, and
Corral
,
R.
,
2001
, “
Application of Phase-Lagged Boundary Conditions to Rotor/Stator Interaction.
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
June 4–7
, pp.
296
309
.
15.
Dewhurst
,
S.
, and
He
,
L.
,
2000
, “
Unsteady Flow Calculations Through Turbomachinery Stages Using Single-Passage Domain With Shape-Correction Method
,”
Proceedings of the Ninth International Symposium on Unsteady Aerodynamics, Aeroelasticity and Aeroacoustics
,
Lyon, France
,
Sept. 4–8
, pp.
338
350
.
16.
Li
,
H.
, and
He
,
L.
,
2005
, “
Toward Intra-Row Gap Optimization for One and Half Stage Transonic Compressor
,”
ASME J. Turbomach.
,
127
(
7
), pp.
589
598
.
17.
Mouret
,
G.
,
Gourdain
,
N.
, and
Castillon
,
L.
,
2016
, “
Adaptation of Phase-Lagged Boundary Conditions to Large Eddy Simulation in Turbomachinery Configurations
,”
ASME J. Turbomach.
,
138
(
4
), p.
041003
.
18.
Montero-Villar
,
G.
,
Lindblad
,
D.
, and
Andersson
,
N.
,
2020
, “
Investigation of Phase-Lagged Boundary Conditions for Turbulence Resolving Turbomachinery Simulations
,”
AIAA Aviation 2020 Forum
,
Virtual Event
,
June 15–19
.
19.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
J. Propul. Power.
,
6
(
5
), pp.
621
627
.
20.
Giles
,
M.
,
1988
, “UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery,”
Gas Turbine Laboratory, Massachusetts Institute of Technology
,
Cambridge, MA
, Technical Report No. 125.
21.
Biesinger
,
T.
,
Cornelius
,
C.
,
Rube
,
C.
,
Braune
,
A.
,
Campregher
,
R.
,
Godin
,
P.
,
Schmid
,
G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery Applications
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18, 2010
, pp.
2441
2452
22.
Cornelius
,
C.
,
Biesinger
,
T.
,
Zori
,
L.
,
Campregher
,
R.
,
Galpin
,
P.
, and
Braune
,
A.
,
2014
, “
Efficient Time Resolved Multistage CFD Analysis Applied to Axial Compressors
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
.
23.
Zori
,
L.
,
Galpin
,
P.
,
Campregher
,
R.
, and
Morales
,
J.
,
2017
, “
Time-Transformation Simulation of a 1.5 Stage Transonic Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
4035450
.
24.
Montiel
,
M.
, and
Corral
,
R.
,
2023
, “
Time-Inclined Method for High-Fidelity Rotor/Stator Simulations
,”
Aerospace
,
10
(
5
), p.
475
.
25.
Huynh
,
H. T.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25–28
, p.
4079
.
26.
Wang
,
Z.
, and
Gao
,
H.
,
2009
, “
A Unifying Lifting Collocation Penalty Formulation Including the Discontinuous Galerkin, Spectral Volume/Difference Methods for Conservation Laws on Mixed Grids
,”
J. Comput. Phys.
,
228
(
21
), pp.
8161
8186
.
27.
Gisbert
,
F.
,
Bolinches-Gisbert
,
M.
,
Pueblas
,
J.
, and
Corral
,
R.
,
2018
, “
Efficient Implementation of Flux Reconstruction Schemes for the Simulation of Compressible Viscous Flows on Graphics Processing Units
,” Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Paper No. ICCFD10-307.
28.
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
June 4–7
.
29.
Kirik
,
I.
, and
Niehuis
,
R.
,
2015
, “
Comparing the Effect of Unsteady Wakes on Parallel and Divergent Endwalls in a LP Turbine Cascade (T106A-EIZ and T106D-EIZ)
,”
Proceedings of the 11th International Gas Turbine Congress 2015 Tokyo
,
Tokyo, Japan
,
Nov. 15–20
.
30.
Giles
,
M.
,
1991
, “UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery,”
Gas Turbine Laboratory, Massachusetts Institute of Technology
,
Cambridge, MA
, Technical Report No. 205.
31.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.
32.
Lodato
,
G.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2008
, “
Three-Dimensional Boundary Conditions for Direct and Large-Eddy Simulation of Compressible Viscous Flows
,”
J. Comput. Phys.
,
227
(
10
), pp.
5105
5143
.
33.
Odier
,
N.
,
Poinsot
,
T.
,
Duchaine
,
F.
,
Gicquel
,
L.
, and
Moreau
,
S.
,
2019
, “
Inlet and Outlet Characteristics Boundary Conditions for Large Eddy Simulations of Turbomachinery
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Phoenix, AZ
,
June 17–21
.
34.
Hallbäck
,
M.
,
Henningson
,
D.
,
Johansson
,
A.
, and
Alfredsson
,
P.
,
2013
,
Turbulence and Transition Modelling: Lecture Notes From the ERCOFTAC/IUTAM Summerschool Held in Stockholm, June 12–20, 1995
, Vol.
2
,
Springer Science & Business Media
,
Dordrecht, Netherlands
.
You do not currently have access to this content.