Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A supersonic inlet turbine can extract substantial energy from the highly fluctuating and transonic flow delivered by a rotating detonation combustor (RDC). However, a transition duct is necessary to achieve the supersonic inlet conditions required by the turbine. In this work, the supersonic transition duct is designed with the method of characteristics (MOC). A generalized implementation of the MOC is proposed for the generation of annular ducts with asymmetric and rotated hub and shroud walls. The model is extended to deal with ideal and non-ideal flows, namely flows characterized by non-ideal thermodynamic effects, and its accuracy has been verified through comparison with results obtained with computational fluid dynamics (CFD) simulations. In addition, boundary layer flow equations are combined with the MOC to predict viscous losses on the endwalls and to adjust duct geometry by accounting for the boundary layer thickness. Furthermore, it is essential to predict the effects of the large unsteadiness generated by the detonation combustor for an efficient operation of the turbine. The maximum incidence angle at the turbine inlet is predicted with a one-dimensional annular duct model. Supersonic duct flow behavior to unsteady inlet conditions is characterized through two-dimensional inviscid axisymmetric unsteady CFD simulations. The accuracy of the reduced order models is finally verified with a three-dimensional unsteady viscous simulation assuming inlet flow conditions representative of RDC operation.

References

1.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
2.
Jones
,
S. M.
, and
Paxson
,
D. E.
,
2013
, “
Potential Benefits to Commercial Propulsion Systems From Pressure Gain Combustion
,”
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
San Jose, CA
,
July 14–17
.
3.
Wintenberger
,
E.
, and
Shepherd
,
J. E.
,
2006
, “
Thermodynamic Cycle Analysis for Propagating Detonations
,”
J. Propul. Power
,
22
(
3
), pp.
694
698
.
4.
Frolov
,
S. M.
,
Dubrovskii
,
A. V.
, and
Ivanov
,
V. S.
,
2013
, “
Three-Dimensional Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Progr. Propul. Phys.
,
4
, pp.
467
488
.
5.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
6.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.
7.
Sarraf
,
D. K.
, and
Spencer
,
D.
,
2023
, “BP Energy Outlook 2023”. Technical Report, Bretish Petroleum.
8.
Ma
,
J. Z.
,
Luan
,
M. -Y.
,
Xia
,
Z. -J.
,
Wang
,
J. -P.
,
Zhang
,
S.-j.
,
Yao
,
S.-b.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.
9.
Raman
,
V.
,
Prakash
,
S.
, and
Gamba
,
M.
,
2023
, “
Nonidealities in Rotating Detonation Engines
,”
Annu. Rev. Fluid Mech.
,
55
(
1
), pp.
639
674
.
10.
Nassini
,
P. C.
,
Andreini
,
A.
, and
Bohon
,
M. D.
,
2023
, “
Characterization of Refill Region and Mixing State Immediately Ahead of a Hydrogen-Air Rotating Detonation Using LES
,”
Combust. Flame
,
258
, p.
113050
.
11.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet-Engines
,
40
(
1
), pp.
1
10
.
12.
Kantrowitz
,
A.
, and
Donaldson
,
C.
,
1945
, “Preliminary Investigation of Supersonic Diffusers”. NACA Wartime Reports.
13.
Mushtaq
,
N.
, and
Gaetani
,
P.
,
2023
, “
Understanding and Modeling Unstarting Phenomena in a Supersonic Inlet Cascade
,”
Phys. Fluids
,
35
, p.
106101
.
14.
Starken
,
H.
,
Yongxing
,
Z.
, and
Schreiber
,
H.-A.
,
1984
, “Mass Flow Limitation of Supersonic Blade Rows Due to Leading Edge Blockage”.
15.
Paniagua
,
G.
,
Iorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
16.
Mushtaq
,
N.
,
Colella
,
G.
, and
Gaetani
,
P.
,
2022
, “
Design and Parametric Analysis of a Supersonic Turbine for Rotating Detonation Engine Applications
,”
Int. J. Turbomach., Propul. Power
,
7
(
1
), p.
1
.
17.
Inhestern
,
L. B.
,
Braun
,
J.
,
Paniagua
,
G.
, and
Serrano Cruz
,
J. R.
,
2020
, “
Design, Optimization, and Analysis of Supersonic Radial Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031023
.
18.
Sousa
,
J.
, and
Paniagua
,
G.
,
2015
, “
Entropy Minimization Design Approach of Supersonic Internal Passages
,”
Entropy
,
17
(
8
), pp.
5593
5610
.
19.
Mushtaq
,
N.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2023
, “
The Role of Endwall Shape Optimization in the Design of Supersonic Turbines for Rotating Detonation Engines
,”
ASME J. Turbomach.
,
145
(
8
), p.
081015
.
20.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.
21.
Mushtaq
,
N.
, and
Gaetani
,
P.
,
2024
, “
The Effect of Upstream Unsteadiness on the Unstarting of a Supersonic Inlet Turbine
,”
ASME J. Turbomach.
,
146
(
4
), p.
041005
.
22.
Braun
,
J.
,
Liu
,
Z.
,
Cuadrado
,
D.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T. R.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, pp.
1
11
.
23.
Shen
,
D.
,
Cheng
,
M.
,
Wu
,
K.
,
Sheng
,
Z.
, and
Wang
,
J.
,
2022
, “
Effects of Supersonic Nozzle Guide Vanes on the Performance and Flow Structures of a Rotating Detonation Combustor
,”
Acta Astronaut.
,
193
, pp.
90
99
.
24.
Su
,
L.
,
Wen
,
F.
,
Wan
,
C.
,
Han
,
J.
,
Wang
,
Y.
, and
Wang
,
S.
,
2023
, “
Coupling Study of Supersonic Turbine Stage and Two-Dimensional Hydrogen/Air Rotating Detonation Combustor
,”
Phys. Fluids.
,
35
(
6
), p.
66125
.
25.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
Rotating Detonation Wave Direction and the Influence of Nozzle Guide Vane Inclination
,”
AIAA J.
,
59
(
12
), pp.
5276
5287
.
26.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.
27.
Braun
,
J.
,
Saavedra
,
J.
, and
Paniagua
,
G.
,
2017
, “
Evaluation of the Unsteadiness Across Nozzles Downstream of Rotating Detonation Combustors
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
, pp.
1
12
.
28.
Braun
,
J.
,
Paniagua
,
G.
, and
Ferguson
,
D.
,
2021
, “
Aero-Thermal Characterization of Accelerating and Diffusing Passages Downstream of Rotating Detonation Combustors
,” ASME Turbo Expo 2021, p.
GT2021–59111
.
29.
Nakata
,
K.
,
Ota
,
K.
,
Ito
,
S.
,
Ishihara
,
K.
,
Goto
,
K.
,
Itouyama
,
N.
,
Watanabe
,
H.
,
Kawasaki
,
A.
,
Matsuoka
,
K.
,
Kasahara
,
J.
, and
Matsuo
,
A.
,
2022
, “
Supersonic Exhaust From a Rotating Detonation Engine With Throatless Diverging Channel
,”
AIAA J.
,
60
(
7
), pp.
4015
4023
.
30.
Nakata
,
K.
,
Ishihara
,
K.
,
Goto
,
K.
,
Itouyama
,
N.
,
Watanabe
,
H.
,
Kawasaki
,
A.
,
Matsuoka
,
K.
, et al.,
2023
, “
Experimental Investigation of Inner Flow of a Throatless Diverging Rotating Detonation Engine
,”
Proc. Combust. Inst.
,
39
(
3
), pp.
3073
3082
.
31.
Sun
,
C.
,
Zheng
,
H.
,
Zhao
,
N.
,
Li
,
Z.
, and
Zhu
,
W.
,
2021
, “
Performance Evaluation and Outlet Load Improvement of a Rotating Detonation Combustor With Different Outlet Nozzles
,”
Int. J. Hydrogen Energy
,
46
(
35
), pp.
18644
18660
.
32.
Ansys
,
2020
. “ANSYS Fluent Theory Guide”.
33.
Leonard
,
B.
, and
Mokhtari
,
S.
,
1990
, “ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow”. Technical Report, NASA.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
35.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Technol. J.
,
27
(
3
), pp.
379
423
.
36.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2006
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
38.
McBride
,
B. J.
,
2002
, ‘NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. National Aeronautics and Space Administration, John H. Glenn Research Center.
39.
Sutherland
,
W.
,
1893
, “
LII. The Viscosity of Gases and Molecular Force
,”
Lond. Edinb. Dublin Phil. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.
40.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1”.
41.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Computational Fluid-Dynamic Investigation of a Centrifugal Compressor With Inlet Guide Vanes for Supercritical Carbon Dioxide Power Systems
,”
Energy
,
255
, p.
124469
.
42.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow: With Historical Perspective
,
McGraw-Hill Education
,
New York
.
43.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1977
,
Gas Dynamics
(
Multi-Dimensional Flow
; Vol.
2
),
Wiley
.
44.
Zocca
,
M.
,
Gajoni
,
P.
, and
Guardone
,
A.
,
2023
, “
NIMOC: A Design and Analysis Tool for Supersonic Nozzles Under Non-Ideal Compressible Flow Conditions
,”
J. Comput. Appl. Math.
,
429
, p.
115210
.
45.
Flock
,
A. K.
, and
Gülhan
,
A.
,
2020
, “
Design of Converging-Diverging Nozzles With Constant-Radius Centerbody
,”
CEAS Space J.
,
12
(
2
), pp.
191
201
.
46.
Carnahan
,
B.
,
1969
,
Applied Numerical Methods
,
Wiley
,
Hoboken, NJ
.
47.
Sauer
,
R.
,
1947
, “General Characteristics of the Flow Through Nozzles at Near Critical Speeds”. Technical Report, NACA TM-1147.
48.
Dutton
,
J. C.
, and
Addy
,
A. L.
,
1982
, “
Transonic Flow in the Throat Region of Annular Supersonic Nozzles
,”
AIAA J.
,
20
(
9
), pp.
1236
1243
.
49.
Dutton
,
J. C.
, and
Addy
,
A. L.
,
1980
, “A Theoretical and Experimental Investigation of Transonic Flow in the Throat Region of Annular Axisymmetric, Supersonic Nozzles”. Technical Report, U.S. Army Research Office.
50.
Nederstigt
,
P.
, and
Pecnik
,
R.
,
2023
, “Generalised Isentropic Relations in Thermodynamics”.
51.
Spinelli
,
A.
,
Cammi
,
G.
,
Gallarini
,
S.
,
Zocca
,
M.
,
Cozzi
,
F.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Guardone
,
A.
,
2018
, “
Experimental Evidence of Non-Ideal Compressible Effects in Expanding Flow of a High Molecular Complexity Vapor
,”
Exp. Fluids
,
59
(
8
), p.
126
.
52.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis”. Technical Report, NASA.
53.
Prasad
,
A.
,
2004
, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
,
127
(
3
), pp.
564
572
.
54.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
55.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “Entropy Production Rates From Viscous Flow Calculations: Part I – A Turbulent Boundary Layer Flow”.
56.
Stratford
,
B. S.
, and
Beavers
,
G. S.
,
1961
, “The Calculation of the Compressible Turbulent Boundary Layer in an Arbitrary Pressure Gradient - A Correlation of Certain Previous Methods”. Aeronautical Research Council Reports (3207).
57.
Cebeci
,
T.
, and
Smith
,
A.
,
1974
,
Analysis of Turbulent Boundary Layers
,
Elsevier
,
New York
.
58.
Pini
,
M.
, and
De Servi
,
C.
,
2020
, “
Entropy Generation in Laminar Boundary Layers of Non-Ideal Fluid Flows
,”
Non-Ideal Compressible Fluid Dynamics for Propulsion and Power
,
F.
di Mare
,
A.
Spinelli
, and
M.
Pini
, eds.,
Springer International Publishing
, pp.
104
117
.
59.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Bhadravati Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows–Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), p.
061009
.
60.
Agromayor
,
R.
,
Müller
,
B.
, and
Nord
,
L. O.
,
2019
, “One-Dimensional Annular Diffuser Model for Preliminary Turbomachinery Design”.
61.
Brown
,
W. B.
,
1947
, “Friction Coefficients in a Vaneless Diffuser”. Technical Report, Flight Propulsion Research Laboratory, Cleveland, OH.
62.
Shapiro
,
A. H.
,
1953
,
Dynamic and Thermodynamics of Compressible Fluid Flow
, Vol.
I
,
John Wiley and Sons Inc
,
Hoboken, NJ
.
You do not currently have access to this content.