Abstract

The impeller stall inception in a high-pressure ratio centrifugal compressor with bleed slots was investigated by experiments and unsteady numerical analysis. This study reported that the flow instability of the internal flow was first initiated around the leading edge of the splitter blades and finally resulted in tip leakage flow instability at the leading edge of the main blades. The impeller stall consisted of a stall cell and rotated about 70% of the impeller rotational speed. Furthermore, a pressure disturbance occurs at the splitter blade leading edge before the main blade leading edge. The blockage within the passage of the suction side at the leading edge of the splitter blade was first increased because the leading-edge separation on the suction surface of the splitter blade was enlarged. The blockage within the passage of the pressure side was increased after that of the suction side stopped increasing. Therefore, the blockage development of both pressure and suction passage at the leading edge of the splitter blade was the main cause of the stall inception. Then, a longitudinal vortex was formed near the bleed slots and blocked the mainstream near tip side. Subsequently, the reverse flow region in the inducer was developed and extended to the impeller inlet. Finally, the flow angle to the main blade increased, the spillage occurred at a leading edge of a main blade, and the rotating stall was generated. The cause of impeller instability was the separation of the suction surface of the splitter blade and the formation of a stagnation region on the pressure surface at the splitter leading edge.

References

1.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.
2.
Greitzer
,
E. M.
,
1976b
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
199
211
.
3.
Iwakiri
,
K.
,
Furukawa
,
M.
,
Ibaraki
,
S.
, and
Tomita
,
I.
,
2009
, “
Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impeller at Rotating Stall
,”
Proceedings of ASME Turbo Expo 2009
, Paper No. GT2009-59516.
4.
Tomita
,
I.
,
Ibaraki
,
S.
,
Furukawa
,
M.
, and
Yamada
,
K.
,
2013
, “
The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
3
), p.
051020
.
5.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Roumeas
,
M.
, and
Trebinjac
,
I.
,
2016
, “
Numerical Simulation of Stall Inception Mechanisms in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121005
.
6.
Cao
,
T.
,
Hayashi
,
Y.
, and
Tomita
,
I.
,
2023
, “
Pressure Characteristic Rollover of a Transonic Centrifugal Impeller
,”
ASME J. Turbomach.
,
145
(
12
), p.
121011
.
7.
Zhang
,
W.
, and
Wu
,
W.
,
2023
, “
Role of the Inducer in Flow Instability of a High-Speed Centrifugal Compressor Impeller
,”
ASME Turbo Expo 2023
, Paper No. GT2023-103035.
8.
Leishman
,
B. A.
,
Cumpsty
,
N. A.
, and
Denton
,
J. D.
,
2007
, “
Effects of Bleed Rate and Endwall Location on the Aerodynamic Behavior of a Circular Hole Bleed Off-Take
,”
ASME J. Turbomach.
,
129
(
4
), pp.
645
658
.
9.
Grimshaw
,
S. D.
,
Pullan
,
G.
, and
Hynes
,
T. P.
,
2016
, “
Modeling Nonuniform Bleed in Axial Compressors
,”
ASME J. Turbomach.
,
138
(
9
), p.
091010
.
10.
Grimshaw
,
S. D.
,
Brind
,
J.
,
Pullan
,
G.
, and
Seki
,
R.
,
2020
, “
Loss in Axial Compressor Bleed Systems
,”
ASME J. Turbomach.
,
142
(
9
), p.
091008
.
11.
Gümmer
,
V.
,
Goller
,
M.
, and
Swoboda
,
M.
,
2008
, “
Numerical Investigation of End Wall Boundary Layer Removal on Highly Loaded Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
130
(
1
), p.
011015
.
12.
Ogino
,
A.
,
Nakayama
,
R.
,
Kitamura
,
E.
,
Fujisawa
,
N.
,
Aoyama
,
S.
, and
Ohta
,
Y.
,
2023
, “
Diffuser Stall Inception in a High-Pressure Ratio Centrifugal Compressor With Fishtail Pipe Diffuser
,”
ASME Turbo Expo 2023
, Paper No. GT2023-100835.
13.
Shima
,
E.
, and
Kitamura
,
K.
,
2011
, “
Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds
,”
AIAA J.
,
49
(
8
), pp.
1693
1709
.
14.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme V: A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
15.
Shima
,
E.
,
1997
, “
A Simple
,”
Proceedings of 29th Fluid Dynamic Conference (in Japanese)
,
Hokkaido, Japan
,
Sept. 24–25
, pp.
325
328
.
16.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
17.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments of the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES
,
Ruston, LA
,
Aug. 4–8
.
18.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.
19.
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2013
, “
Analysis of Axial Compressor Stall Inception Using Unsteady Casing Pressure Measurements
,”
ASME J. Turbomach.
,
135
(
2
), p.
021036
.
20.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.
You do not currently have access to this content.