Abstract

Analysis, optimization, and uncertainty quantification of the aerodynamic behavior of turbomachinery components is a fundamental part of the current industrial design process and requires the extensive use of compute-intensive computational fluid dynamics (CFD) simulations. This paper explores the potential of graph neural networks as surrogate models to accelerate the design process, for example, in a multi-fidelity framework. Graph neural networks promise to provide good estimates of flow quantities while maintaining the geometric accuracy at a fraction of the computational effort of CFD. To assess the performance of such methods, a state-of-the-art graph neural network is applied to a turbomachinery setup of industry-relevant mesh size. In particular, a multiscale graph neural network is used to overcome the problems of large information distances when applying message-passing based graph-net blocks to large meshes. The training database consists of a space-filling design of experiment of 100 CFD solutions with different geometries. The first use case encompasses the prediction of flow quantities of the complete fluid domain with 2.5×106 mesh points. The second use case focuses on predicting a single scalar (e.g., pressure) on surface meshes with up to 30×103 mesh points. In both cases, the networks predict time-averaged and unsteady flow fields on unstructured meshes of variable point sizes for new geometries not present in the training set. The results demonstrate the proficiency of the approach in predicting time-averaged and unsteady flow quantities on surfaces as well as for full fluid domains for new geometries.

References

1.
Han
,
Z.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
2.
Wiegand
,
M.
,
Prots
,
A.
,
Meyer
,
M.
,
Schmidt
,
R.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2025
, “
Robust Design Optimization of a Compressor Rotor Using Recursive CoKriging Based Multi-fidelity Uncertainty Quantification and Multi-fidelity Optimization
,”
ASME J. Turbomach.
,
147
(
6
), p.
061009
.
3.
Berkooz
,
G
,
Holmes
,
P
, and
Lumley
,
J. L..
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
4.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
5.
Iuliano
,
E.
, and
Quagliarella
,
D.
,
2013
, “
Proper Orthogonal Decomposition, Surrogate Modelling and Evolutionary Optimization in Aerodynamic Design
,”
Comput. Fluids
,
84
(
1
), pp.
327
350
.
6.
Franz
,
T.
,
Zimmermann
,
R.
,
Görtz
,
S.
, and
Karcher
,
N.
,
2014
, “
Interpolation-Based Reduced-Order Modelling for Steady Transonic Flows Via Manifold Learning
,”
Int. J. Comput. Fluid Dyn.
,
28
(
3–4
), pp.
106
121
.
7.
Ripepi
,
M.
,
Verveld
,
M. J.
,
Karcher
,
N. W.
,
Franz
,
T.
,
Abu-Zurayk
,
M.
,
Görtz
,
S.
, and
Kier
,
T. M.
,
2018
, “
Reduced-Order Models for Aerodynamic Applications, Loads and MDO
,”
CEAS Aeronaut. J.
,
9
(
1
), pp.
171
193
.
8.
Hines
,
D.
, and
Bekemeyer
,
P.
,
2023
, “
Graph Neural Networks for the Prediction of Aircraft Surface Pressure Distributions
,”
Aerosp. Sci. Technol.
,
137
(
1
), p.
108268
.
9.
Kashefi
,
A.
,
Rempe
,
D.
, and
Guibas
,
L. J.
,
2021
, “
A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries
,”
Phys. Fluids
,
33
(
2
), p.
027104
.
10.
Aulich
,
M.
,
Kueppers
,
F.
,
Schmitz
,
A.
, and
Voß
,
C.
,
2019
, “
Surrogate Estimations of Complete Flow Fields of Fan Stage Designs Via Deep Neural Networks
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
11.
Deshpande
,
S.
,
Lengiewicz
,
J.
, and
Bordas
,
S. P. A.
,
2022
, “
Probabilistic Deep Learning for Real-Time Large Deformation Simulations
,”
Comput. Methods Appl. Mech. Eng.
,,
398
(
1
), p.
115307
.
12.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
,
2017
, “
Geometric Deep Learning: Going Beyond Euclidean Data
,”
IEEE Signal Process. Mag.
,
34
(
4
), pp.
18
42
.
13.
De Avila Belbute-Peres
,
F.
,
Economon
,
T.
, and
Kolter
,
Z.
,
2020
, “
Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction
,”
Proceedings of the 37th International Conference on Machine Learning
,
Online
,
July 12–18
, PMLR, pp.
2402
2411
.
14.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P.
,
2021
, “
Learning Mesh-Based Simulation With Graph Networks
,”
International Conference on Learning Representations
,
Online
,
May 3–7
.
15.
Strönisch
,
S.
,
Meyer
,
M.
, and
Lehmann
,
C.
,
2022
, “
Flow Field Prediction on Large Variable Sized 2D Point Clouds With Graph Convolution
,”
Proceedings of the Platform for Advanced Scientific Computing Conference
,
Basel, Switzerland
,
June 27–29
, ACM, New York, pp.
1
10
.
16.
Blechschmidt
,
D.
, and
Mimic
,
D.
,
2023
, “
A Machine Learning Approach for the Prediction of Time-Averaged Unsteady Flows in Turbomachinery
,”
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
.
17.
Strönisch
,
S.
,
Sander
,
M.
,
Meyer
,
M.
, and
Knüpfer
,
A.
,
2023
, “
Multi-GPU Approach for Training of Graph ML Models on Large CFD Meshes
,”
AIAA SCITECH 2023 Forum
,
National Harbor, MD
,
Jan. 23–27
.
18.
Tripathy
,
A.
,
Yelick
,
K.
, and
Buluç
,
A.
,
2020
, “
Reducing Communication in Graph Neural Network Training
,”
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
,
Atlanta, GA
,
Nov. 9–19
, pp.
1
14
.
19.
Fortunato
,
M.
,
Pfaff
,
T.
,
Wirnsberger
,
P.
,
Pritzel
,
A.
, and
Battaglia
,
P.
,
2022
, “
MultiScale MeshGraphNets
,”
ICML 2022 2nd AI for Science Workshop
,
Online
,
July 23
.
20.
Lino
,
M.
,
Bharath
,
A.
,
Fotiadis
,
Ss
, and
Cantwell
,
C.
,
2022
, “
Towards Fast Simulation of Environmental Fluid Mechanics With Multi-scale Graph Neural Networks
,”
ICLR 2022 Workshop on AI for Earth and Space Science
,
Online
,
April 29
.
21.
Cao
,
Y.
,
Chai
,
M.
,
Li
,
M.
, and
Jiang
,
C.
,
2023
, “
Efficient Learning of Mesh-Based Physical Simulation With Bi-Stride Multi-scale Graph Neural Network
,”
Proceedings of the 40th International Conference on Machine Learning
,
Honululu, HI
.
22.
Deshpande
,
S.
,
2023
, “
Data Driven Surrogate Frameworks for Computational Mechanics: Bayesian and Geometric Deep Learning Approaches
,” Ph.D. thesis,
University of Luxembourg
,
Luxembourg
. Sept. 18.
23.
Sander
,
M.
, Distributed Dataloader For PyTorch. doi 10.5281/zenodo.10391055. https://github.com/maximilian-tech/ddl.
24.
Frey
,
C.
,
Ashcroft
,
G.
,
Müller
,
M.
, and
Wellner
,
J.
,
2023
, “
Analysis of Turbomachinery Averaging Techniques
,”
ASME J. Turbomach.
,
145
(
5
), p.
051006
.
25.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2008
,
Numerische Strömungsmechanik
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
26.
Sanchez-Gonzalez
,
A.
,
Godwin
,
J.
,
Pfaff
,
T.
,
Ying
,
R.
,
Leskovec
,
J.
, and
Battaglia
,
P.
,
2020
, “
Learning to Simulate Complex Physics With Graph Networks
,”
Proceedings of the 37th International Conference on Machine Learning
,
Online
,
July 12–18
, PMLR, pp.
8459
8468
.
27.
Amtsfeld
,
P.
,
2018
,
Methoden Für Die Beschleunigte Aerodynamische Optimierung Von Turbinenschaufeln
(
Berichte aus der Luft- und Raumfahrttechnik
),
Shaker Verlag
,
Aachen, Germany
.
28.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific & Engineering Computation (IC-SEC)
,
Singapore
.
29.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
.
30.
CIDS, ZIH, TU Dresden
, “HPC Resources, ” https://doc.zih.tu-dresden.de, Accessed December 30, 2024.
31.
Mudalige
,
G. R.
,
Reguly
,
I. Z.
,
Prabhakar
,
A.
,
Amirante
,
D.
,
Lapworth
,
L.
, and
Jarvis
,
S. A.
,
2022
, “
Towards Virtual Certification of Gas Turbine Engines With Performance-Portable Simulations
,”
International Conference on Cluster Computing (CLUSTER)
,
Heidelberg, Germany
,
Sept. 5–8
, IEEE, pp.
206
217
.
32.
Di Giusto
,
D.
, and
Castagna
,
J.
,
2022
, “
A Scalable Algorithm for Many-Body Dissipative Particle Dynamics Using Multiple General Purpose Graphic Processing Units
,”
Comput. Phys. Commun.
,
280
(
1
), pp.
108472
108474
.
You do not currently have access to this content.