Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design of high-loading and compact modern turbomachines results in strong unsteady interactions between two adjacent blade rows, which has been found to have a noticeable impact on aerodynamic performances of turbomachines. Therefore, it is necessary to consider unsteady effects arising from blade row interactions in multirow turbomachinery aerodynamic analyses and design optimizations. In this work, three-dimensional multirow unsteady aerodynamic design optimizations of turbomachinery blades are performed using a full-viscosity discrete adjoint solver developed by using the source code transformation automatic differentiation tool—Tapenade. An efficient time domain harmonic balance (HB) method with a complete rotor–stator interface coupling treatment is used to analyze multirow unsteady flow and adjoint fields. To stabilize the solution, the one-step Jacobi iteration combined with the lower–upper symmetric Gauss-Seidel (LU-SGS/one-step Jacobi) method is used for an implicit solution of the HB equation systems. For an efficient sensitivity evaluation, the effect of an adjoint solver’s root-mean-square (RMS) residual convergence levels on adjoint sensitivity accuracy is thoroughly studied to find an adjoint solver’s convergence criterion. The results from a single-stage transonic compressor-NASA Stage 35 reveal that when the adjoint RMS residual is reduced by three orders, accurate sensitivity information can be obtained, leading to a 41% reduction in computational cost compared with a fully converged one. The fully implicit LU-SGS/one-step Jacobi method can stabilize the solution of a multirow discrete adjoint solver while the solution of the semi-implicit LU-SGS equation system diverges quickly. Furthermore, compared with a steady one, the unsteady optimization can achieve more performance gains.

References

1.
Oyama
,
A.
,
Liou
,
M.
, and
Obayashi
,
S.
,
2012
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power.
,
20
(
4
), pp.
612
619
.
2.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power.
,
20
(
3
), pp.
559
565
.
3.
Nielsen
,
E.
, and
Kleb
,
W.
,
2006
, “
Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables
,”
AIAA. J.
,
44
(
4
), pp.
827
836
.
4.
Vatsa
,
V.
,
2000
, “
Computation of Sensitivity Derivatives of Navier-Stokes Equations Using Complex Variables
,”
Adv. Eng. Softw.
,
31
(
8
), pp.
655
659
.
5.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
6.
Jamson
,
A.
,
Martinelli
,
L.
, and
Pierce
,
N.
,
1998
, “
Optimum Aerodynamic Design Using the Navier-Stokes Equations
,”
Theor. Comput. Fluid Dyn.
,
10
(
1
), pp.
213
237
.
7.
Wu
,
H.
,
Yang
,
M.
,
Wang
,
D.
, and
Huang
,
X.
,
2024
, “
Efficient Forced Response Minimization Using a Full-Viscosity Discrete Adjoint Harmonic Balance Method
,”
AIAA. J.
,
62
(
10
), pp.
3644
3661
.
8.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2013
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.
9.
Luo
,
J.
,
Liu
,
F.
, and
Mcbean
,
I.
,
2015
, “
Turbine Blade Row Optimization Through Endwall Contouring by an Adjoint Method
,”
J. Propul. Power.
,
31
(
2
), pp.
505
518
.
10.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p.
021011
.
11.
Wang
,
D.
,
He
,
L.
,
Li
,
Y.
, and
Wells
,
R.
,
2012
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
12.
Walther
,
B.
, and
Nadarajah
,
S.
,
2010
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single-Stage Transonic Compressor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021017
.
13.
Wu
,
H.
,
Da
,
X.
,
Wang
,
D.
, and
Huang
,
X.
,
2023
, “
Multi-row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver
,”
Aerospace
,
10
(
106
), pp.
1
26
.
14.
Denton
,
J.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
15.
Wang
,
D.
,
2014
, “
An Improved Mixing-Plane Method for Analyzing Steady Flow Through Multiple-Blade-Row Turbomachines
,”
ASME J. Turbomach.
,
136
(
8
), p.
081003
.
16.
He
,
L.
,
Chen
,
T.
,
Wells
,
R.
,
Li
,
Y.
, and
Ning
,
W.
,
2002
, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-stage Turbomachines
,”
ASME J. Turbomach.
,
124
(
4
), pp.
564
571
.
17.
Wang
,
B.
,
Wang
,
D.
,
Rahmati
,
M.
, and
Huang
,
X.
,
2022
, “
Revisiting the Space-Time Gradient Method: a Time-Clocking Perspective, High Order Difference Time Discretization and Comparison With the Harmonic Balance Method
,”
Chinese J. Aeronaut.
,
35
(
11
), pp.
1
9
.
18.
Ning
,
W.
,
Li
,
Y.
, and
Wells
,
R.
,
2003
, “
Predicting Bladerow Interactions Using a Multistage Time-Linearized Navier-Stokes Solver
,”
ASME J. Turbomach.
,
125
(
1
), pp.
25
32
.
19.
Ntanakas
,
G.
,
Meyer
,
M.
, and
Giannakoglou
,
K.
,
2018
, “
Employing the Time-Domain Unsteady Discrete Adjoint Method for Shape Optimization of Three-Dimensional Multirow Turbomachinery Configurations
,”
ASME J. Turbomach.
,
140
(
8
), p.
081006
.
20.
Hall
,
K.
,
Ekici
,
K.
,
Thomas
,
J.
, and
Dowell
,
E.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA. J.
,
40
(
5
), pp.
879
886
.
21.
Clark
,
W.
, and
Hall
,
K.
,
2000
, “
A Time-Linearized Navier–Stokes Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
(
3
), pp.
403
429
.
22.
Ning
,
W.
, and
He
,
L.
,
1997
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
23.
Yi
,
J.
, and
He
,
L.
,
2015
, “
Space-time Gradient Method for Unsteady Bladerow Interaction—Part I: Basic Methodology and Verification
,”
ASME J. Turbomach.
,
137
(
11
), p.
111008
.
24.
He
,
L.
,
Yi
,
J.
, and
Adami
,
L.
,
2015
, “
Space-Time Gradient Method for Unsteady Bladerow Interaction—Part II: Further Validation, Clocking, and Multi-disturbance Effect
,”
ASME J. Turbomach.
,
137
(
11
), p.
121004
.
25.
He
,
L.
, and
Wang
,
D.
,
2010
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
26.
Wu
,
H.
,
Wang
,
D.
, and
Huang
,
X.
,
2023
, “
Multi-objective Aerodynamic and Aeroelastic Coupled Design Optimization Using a Full Viscosity Discrete Adjoint Harmonic Balance Method
,”
ASME J. Turbomach.
,
145
(
10
), p.
101002
.
27.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
An Efficient Unsteady Adjoint Optimization System for Multistage Turbomachinery
,”
ASME J. Turbomach.
,
139
(
1
), p.
011003
.
28.
Rubino
,
A.
,
Vitale
,
S.
,
Colonna
,
P.
, and
Pini
,
M.
,
2020
, “
Fully-Turbulent Adjoint Method for the Unsteady Shape Optimization of Multi-row Turbomachinery
,”
Aerosp. Sci. Technol.
,
13
(
01
), pp.
106
132
.
29.
Hascoet
,
L.
, and
Pascual
,
V.
,
2013
, “
The Tapenade Automatic Differentiation Tool: Principle, Model, and Specification
,”
ACM Trans. Math. Softw., Assoc. Comput. Mach.
,
39
(
3
), p.
00913983f
.
30.
Hall
,
K.
,
Ekici
,
K.
,
Thomas
,
J.
, and
Dowell
,
E.
,
2013
, “
Harmonic Balance Method Applied to Computational Fluid Dynamics Problems
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
52
67
.
31.
Huang
,
X.
,
Wu
,
H.
, and
Wang
,
D.
,
2018
, “
Implicit Solution of Harmonic Balance Equation System Using the LU-SGS Method and One-Step Jacobi/Gauss-Seidel Iteration
,”
Int. J. Comput. Fluid Dyn.
,
32
(
4–5
), pp.
218
232
.
32.
Reid
,
L.
, and
Moore
,
R.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” Scientific and Technical Information Office, NASA, United States.
33.
Wu
,
H.
,
Wang
,
D.
, and
Huang
,
X.
,
2023
, “
Effect of Constant Eddy Viscosity Assumption on Optimization Using a Discrete Adjoint Method
,”
Chinese J. Aeronaut.
,
36
(
11
), pp.
102
118
.
34.
Wang
,
D.
, and
Huang
,
X.
,
2017
, “
A Complete Rotor–Stator Coupling Method for Frequency Domain Analysis of Turbomachinery Unsteady Flow
,”
Aerosp. Sci. Technol.
,
70
(
11
), pp.
367
377
.
You do not currently have access to this content.