Abstract

A simple procedure for estimating the uncertainty of estimates of true solutions to problems of deflection, stress concentrations, and force resultants in solid and structural mechanics is introduced. Richardson extrapolation is carried out on a dataset of samples from a sequence of four grids. Simple median-based statistical analysis is used to establish 95% confidence intervals. The procedure leads to simple calculations that deliver reasonably tight estimates of the true solution and confidence intervals.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
2.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
,
2002
, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
,
75
(
3
), pp.
333
357
.10.1016/S0951-8320(01)00120-X
3.
Richardson
,
L. F.
,
1911
, “
IX. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
4.
Editorial,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
5.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
6.
Roache
,
P. J.
,
2016
, “
Verification and Validation in Fluids Engineering: Some Current Issues
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101205
.10.1115/1.4033979
7.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations–Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
8.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
9.
Eca
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
10.
Rider
,
W.
,
Witkowski
,
W.
,
Kamm
,
J. R.
, and
Wildey
,
T.
,
2016
, “
Robust Verification Analysis
,”
J. Comput. Phys.
,
307
, pp.
146
163
.10.1016/j.jcp.2015.11.054
11.
Radtke
,
G. A.
,
Martin
,
N.
,
Moore
,
C. H.
,
Huang
,
A.
, and
Cartwright
,
K. L.
,
2022
, “
Robust Verification of Stochastic Simulation Codes
,”
J. Comput. Phys.
,
451
, p.
110855
.10.1016/j.jcp.2021.110855
12.
ASME,
2012
, “
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York, Standard No. ASME V&V 10.1.
13.
Beisheim
,
J. R.
,
Sinclair
,
G. B.
, and
Roache
,
P. J.
,
2018
, “
Effective Convergence Checks for Verifying Finite Element Stresses at Three-Dimensional Stress Concentrations
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
3
(
3
), p.
034501
.10.1115/1.4042515
14.
Eça
,
L.
,
Hoekstra
,
M.
,
Beja Pedro
,
J. F.
, and
de Campos
,
J. A. C. F.
,
2013
, “
On the Characterization of Grid Density in Grid Refinement Studies for Discretization Error Estimation
,”
Int. J. Numer. Methods Fluids
,
72
(
1
), pp.
119
134
.10.1002/fld.3737
15.
Leys
,
C.
,
Ley
,
C.
,
Klein
,
O.
,
Bernard
,
P.
, and
Licata
,
L.
,
2013
, “
Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median
,”
J. Exp. Soc. Psychol.
,
49
(
4
), pp.
764
766
.10.1016/j.jesp.2013.03.013
16.
Huber
,
P. J.
,
1981
,
Robust Statistics
,
Wiley
,
New York
.
17.
Rousseeuw
,
P. J.
, and
Croux
,
C.
,
1993
, “
Alternatives to the Median Absolute Deviation
,”
J. Am. Stat. Assoc.
,
88
(
424
), pp.
1273
1283
.10.1080/01621459.1993.10476408
18.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.10.1016/j.jcp.2008.04.002
19.
Stein
,
E.
,
de Borst
,
R.
, and
Hughes
,
T. J. R.
,
2004
,
Encyclopedia of Computational Mechanics
, Vol.
3
in Encyclopedia of Computational Mechanics,
Wiley
, New York.
20.
Szabó
,
B.
, and
Babuška
,
I.
,
2021
,
Finite Element Analysis: Method, Verification and Validation
, Wiley Series in Computational Mechanics,
Wiley
, New York.
21.
Sivapuram
,
R.
, and
Krysl
,
P.
,
2018
, “
Improved Recovered Nodal Stress for Mean-Strain Finite Elements
,”
Finite Elem. Anal. Des.
,
146
, pp.
70
83
.10.1016/j.finel.2018.04.005
22.
Sadd
,
M. H.
,
2014
, “
Chapter 8—Two-Dimensional Problem Solution
,”
Elasticity
, 3rd ed.,
Martin H.
Sadd
, ed.,
Academic Press
,
Boston
, pp.
159
234
.
23.
Krysl
,
P.
,
2015
, “
Mean-Strain Eight-Node Hexahedron With Optimized Energy-Sampling Stabilization for Large-Strain Deformation
,”
Int. J. Numer. Methods Eng.
,
103
(
9
), pp.
650
670
.10.1002/nme.4907
24.
Krysl
,
P.
, and
Chen
,
J. S.
,
2022
, “
Benchmarking Computational Shell Models
,”
Arch. Comput. Methods Eng.
, pp.
1886
1784
.10.1007/s11831-022-09798-5
25.
Krysl
,
P.
,
2022
, “
Robust Flat-Facet Triangular Shell Finite Element
,”
Int. J. Numer. Methods Eng.
,
123
(
10
), pp.
2399
2423
.10.1002/nme.6944
26.
Timoshenko
,
S.
,
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
(Engineering Mechanics Series),
McGraw-Hill
, New York.
27.
Anonymous
,
2018
,
ABAQUS/Standard User's Manual
, 6.14 ed.,
Dassault Systemes Simulia
, Providence, RI.
You do not currently have access to this content.