The near-field steady state scattered potential around a rigid scatterer subjected to plane incident wave is computed using the finite element method with radiation boundary dampers on a finite truncation boundary. Then the solution in the outer domain is sought in the form of an eigenfunction expansion and the expansion coefficients are obtained using the finite element solution on the truncation boundary as Dirichlet boundary condition. The scattered far-field pattern is derived from this solution for prolate spheroid and hemispherically capped cylinder problems.
1.
Abramowitz, M., and Stegun, I. A., 1972, Spheroidal Wave Function, Handbook of Mathematical Functions, Dover, New York.
2.
Assaad
J.
Decarpigny
J.-N.
Bruneel
C.
Bossut
R.
Hamonic
B.
1993
, “Application of the Finite Element Method to Two-Dimensional Radiation Problems
,” J. Acoust. Soc. Am.
, Vol. 94
, pp. 562
–573
.3.
Bando
K.
Bettess
P.
Emson
C.
1984
, “The Effectiveness of Dampers for the Analysis of Exterior Scalar Wave Diffraction by Cylinders and Ellipsoids
,” Int. J. Num. Meth. Fluids
, Vol. 4
, pp. 589
–617
.4.
Baumeister
K. J.
Kreider
K. L.
1993
, “Modal Element Method for Scattering and Absorbing of Sound by Two-Dimensional Bodies
,” ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol. 115
, pp. 314
–323
.5.
Bayliss
A.
Gunzburger
M.
Turkel
E.
1982
, “Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Region
,” SIAM J. Appl. Math.
, Vol. 42
, pp. 430
–451
.6.
Bossut
R.
Decarpigny
J.-N.
1989
, “Finite Element Modelling of Radiating Structures Using Dipolar Damping Elements
,” J. Acoust. Soc. Am.
Vol. 86
, pp. 1234
–1244
.7.
Givoli, D., 1989, “A Finite Element Method for Large Domain Problems,” Ph.D. Dissertation, Stanford University.
8.
Junger, M. C., and Feit, D., 1986, Sound, Structures and Their Interaction, Second Edition, MIT Press, Cambridge.
9.
Kleinman
R. E.
Roach
G. F.
Schuetz
L. S.
Shirron
J.
1988
, “An Iterative Solution to Acoustic Scattering by Rigid Objects
,” J. Acoust. Soc. Am.
, Vol. 84
, pp. 385
–391
.10.
Lim
R.
Hackman
R. H.
1983
, “A Formulation of Multiple Scattering by Many Bounded Obstacles Using a Multicentered T-Supermatrix
,” J. Acoust. Soc. Am.
, Vol. 91
, pp. 613
–638
.11.
Miller
R. D.
Moyer
E. T.
Huang
H.
Uberall
H.
1991
, “A Comparison Between the Boundary Element Method and the Wave Superposition Approach for the Analysis of the Scattered Fields from Rigid Bodies and Elastic Shells
,” J. Acoust. Soc. Am.
, Vol. 89
, pp. 2185
–2196
.12.
Pinsky
P. M.
Abboud
N. N.
1990
, “Transient Finite Element Analysis of the Exterior Structural Acoustics Problem
,” ASME JOURNAL OF VIBRATION ACOUSTICS, STRESS, AND RELIABILITY IN DESIGN
, Vol. 112
, pp. 245
–256
.13.
Schenck
H. A.
1968
, “Improved Integral Formulation for Acoustic Radiation Problems
,” J. Acoust. Soc. Am.
, Vol. 44
, pp. 41
–58
.14.
Seybert
A. F.
Rengarajan
T. K.
1987
, “The Use of CHIEF to Obtain Unique Solutions for Acoustic Radiation Using Boundary Integral Equations
,” J. Acoust. Soc. Am.
, Vol. 81
, pp. 1299
–1306
.15.
Varadan, V. V., and Varadan, V. K., 1981, “Elastic Scattering by Embedded Structures—A Survey of the T-Matrix Approach,” in Computational Methods for Infinite Domain Media-Structure Interaction, Vol. 46, The Applied Mechanics Division, ASME, New York.
16.
Waterman
P. C.
1969
, “New Formulation of Acoustic Scattering
,” J. Acoust. Soc. Am.
Vol. 45
, pp. 1417
–1429
.17.
Waterman
P. C.
1976
, “Matrix Theory of Elastic Wave Scattering
,” J. Acoust. Soc. Am.
, Vol. 60
, pp. 567
–580
.18.
Wright, J. P., 1993, “Direct Time Integration Methods for Structural Acoustics and Far Field Scattering Computations,” in Structural Acoustics, R. F. Keltie et al., eds., ASME, New York.
19.
Wu
T. W.
Li
W. L.
Seybert
A. F.
1993
, “An Efficient Boundary Element Algorithm for Multi-frequency Acoustic Analysis
,” J. Acoust. Soc. Am.
, Vol. 94
, pp. 447
–452
.20.
Zienkiewicz, O. C., and Taylor, R. L., 1989, The Finite Element Method. Basic Formulation and Linear Problems, Fourth edition, McGraw-Hill Company, London.
This content is only available via PDF.
Copyright © 1996
by The American Society of Mechanical Engineers
You do not currently have access to this content.