Abstract

The criteria for the grazing bifurcation of a periodically forced, piecewise linear system are developed and the initial grazing manifolds are obtained. The initial grazing manifold is invariant. The grazing flows are illustrated to verify the analytic prediction of grazing. The mechanism of the strange attractors fragmentation caused by the grazing is discussed, and an illustration of the fragmentized strange attractor is given through the Poincaré mapping. This fragmentation phenomenon exists extensively in nonsmooth dynamical systems. The mathematical structure of the fragmentized strange attractors should be further developed.

1.
Hartog
,
J. P. D.
, and
Mikina
,
S. J.
, 1932, “
Forced Vibrations With Non-linear Spring Constants
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
157
164
.
2.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
, 1974, “
Piecewise Linear Systems
,” in
Vibration Problems in Engineering
, 4th ed.,
Van Nostrand
,
New York
, pp.
186
201
.
3.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
(
1
), pp.
121
155
.
4.
Natsiavas
,
S.
, 1989, “
Periodic Response and Stability of Oscillators With Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
0022-460X,
134
(
2
), pp.
315
331
.
5.
Kleczka
,
M.
,
Kreuzer
,
E.
, and
Schiehlen
,
W.
, 1992, “
Local and Global Stability of a Piecewise Linear Oscillator
,”
Philosophical Transactions: Physical Sciences and Engineering, Nonlinear Dynamics of Engineering Systems
,
338
(
1651
), pp.
533
546
.
6.
Theodossiades
,
S.
, and
Natsiavas
,
S.
, 2000, “
Non-linear Dynamics of Gear-pair Systems With Periodic Stiffness and Backlash
,”
J. Sound Vib.
0022-460X,
229
(
2
), pp.
287
310
.
7.
Li
,
G. X.
,
Rand
,
R. H.
, and
Moon
,
F. C.
, 1990, “
Bifurcation and Chaos in a Forced Zero-stiffness Impact Oscillator
,”
Int. J. Non-Linear Mech.
0020-7462,
25
(
4
), pp.
414
432
.
8.
Nordmark
,
A. B.
, 1991, “
Non-periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
9.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcation in n-Dimensional Piecewise-smooth Dynamical Systems
,”
Physica D
0167-2789,
1
(
60
), pp.
222
254
.
10.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A. B.
, 2002, “
Bifurcation of Dynamical Systems With Sliding: Derivation of Normal Form Mappings
,”
Physica D
0167-2789,
170
, pp.
175
205
.
11.
Ivanov
,
A. P.
, 1993, “
Analytical Methods in the Theory of Vibro-impact Systems
,”
J. Appl. Math. Mech.
0021-8928,
57
, pp.
221
236
.
12.
Luo
,
A. C. J.
, and
Menon
,
S.
, 2004, “
Global Chaos in a Periodically Forced, Linear System With a Dead-zone Restoring Force
,”
Chaos, Solitons Fractals
0960-0779,
1
(
9
), pp.
1189
1199
.
13.
Dankowicz
,
H.
, and
Zhao
,
X.
, 2005, “
Local Analysis of Co-dimension-one and Co-dimension-two Grazing Bifurcations in Impacting Microactuators
,”
Physica D
0167-2789,
2
(
02
), pp.
238
257
.
14.
Filippov
,
A. F.
, 1988,
Differential Equations with Discontinuous Righthand Sides
,
Kluwer Academic Publishers
,
Dordrecht
.
15.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-smooth Dynamical Systems on Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
1
(
0
), pp.
1
55
.
You do not currently have access to this content.