Abstract

An artificial reverberator is proposed in this paper to synthesize room responses. The method employs the virtual source representation and the comb-nested allpass filters to generate the early reflection and late reverberation, respectively, of room responses. The virtual source method is based on a simple representation of sound field with a distribution of discrete simple sources on the boundary. The complex strengths of the virtual sources are then calculated by solving a frequency domain least-square problem. Parameters such as room geometry, size, and wall absorption are naturally incorporated into the synthesis process. The filtering property of human hearing is also exploited in a nonuniform sampling procedure to further simplify the computation. Apart from the early reflection, a comb-allpass filter network is adopted to simulate late reverberations. Optimal parameters of the comb-allpass filter network are obtained using the genetic algorithm (GA). The energy decay curve (EDC) is chosen as the objective function in the GA procedure. Numerical simulations are carried out for a rectangular room and a concert hall model to verify the proposed technique. Subjective listening experiments demonstrate that the present technique is capable of conferring remarkable realism of room responses.

1.
Jot
,
J. M.
, 1992, “
An Analysis/Synthesis Approach to Real-Time Artificial Reverberation
,”
Proc. IEEE, International Conference Acoust., Speech and Signal Processing
, ICASSP-92, San Francisco,
2
, pp.
221
224
.
2.
Lee
,
H.
, and
Lee
,
B.-H.
, 1988, “
An Efficient Algorithm for the Image Model Technique
,”
Appl. Acoust.
0003-682X,
24
, pp.
87
115
.
3.
Krokstad
,
A.
,
Strom
,
S.
, and
Sorsdal
,
S.
, 1983, “
Fifteen Years’ Experience With Computarized Ray-Tracing
,”
Appl. Acoust.
0003-682X,
16
, pp.
291
312
.
4.
Drumm
,
I. A.
, and
Lam
,
Y. W.
, 2000, “
The Adaptive Beamtracing Algorithm
,”
J. Acoust. Soc. Am.
0001-4966,
107
, pp.
1405
1412
.
5.
Lewers
,
T.
, 1993, “
A Combined Beam Tracing and Radiant Exchange Computer Model of Room Acoustics
,”
Appl. Acoust.
0003-682X,
38
, pp.
161
178
.
6.
Van Maercke
,
D.
, and
Martin
,
J.
, 1993, “
Prediction of Echograms and Impulse Responses
,”
Appl. Acoust.
0003-682X,
38
, pp.
94
114
.
7.
Xiangyang
,
Z.
,
Kean
,
C.
, and
Jincai
,
S.
, 2002, “
A Study of Various Barriers in Enclosed Sound Field by Using the Computer Program-SOFIS
,”
J. Sound Vib.
0022-460X,
253
(
5
), pp.
1115
1124
.
8.
Koopmann
,
G. H.
,
Song
,
L.
, and
Fahnline
,
J. B.
, 1989, “
A Method for Computing Acoustic Fields Based on the Principle of Wave Superposition
,”
J. Acoust. Soc. Am.
0001-4966,
86
, pp.
2433
2438
.
9.
Williams
,
E. G.
, 1999,
Fourier Acoustics
,
Academic Press
.
10.
1991,
Boundary Element Methods in Acoustics
,
R. D.
Cliskowski
, and
C. A.
Brebbia
, eds.,
Comp. Mechanics/Elsevier Applied Science
, London.
11.
Nelson
,
P. A.
, and
Elliott
,
S. J.
, 1992,
Active Control of Sound
,
Academic Press
.
12.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
, 1982,
Fundamentals of Acoustics
,
John Wiley
, New York.
13.
Gardner
,
W. G.
, 1992, “
A Real-Time Multi-Channel Room Simulator
,”
J. Acoust. Soc. Am.
0001-4966,
92
(
4
), p.
2395
.
14.
Schroeder
,
M. R.
, 1965, “
New Method of Measuring Reverberation Time
,”
J. Audio Eng. Soc.
0004-7554,
37
, pp.
409
412
.
15.
Chen
,
B. S.
, and
Cheng
,
Y. M.
, 1998, “
A Structure-Specified H∞ Optimal Control Design for Practical Applications: A Genetic application
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
6
), pp.
707
718
.
16.
Kozek
,
T.
,
Roska
,
T.
, and
Chua
,
L. O.
, 1993, “
Genetic algorithm for CNN template learning
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
40
, pp.
392
402
.
17.
Physikalisch-Technische Bundesanstalt
, Project 1.401: simulation of room acoustics, http://www.ptb.de/en/org/l/l7/173/roundrob2_l.htmhttp://www.ptb.de/en/org/l/l7/173/roundrob2_l.htm
You do not currently have access to this content.