A nonlinear vibration analysis of laminated cylindrical shells is presented in which the effect of the specified boundary conditions at the shell edges, including nonlinear fundamental state deformations, can be accurately taken into account. The method is based on a perturbation expansion for both the frequency parameter and the dependent variables. The present theory includes the effects of finite vibration amplitudes, initial geometric imperfections, and a nonlinear static deformation. Nonlinear Donnell-type equations formulated in terms of the radial displacement W and an Airy stress function F are used, and classical lamination theory is employed. Furthermore, an extension of the theory is presented to analyze linearized flutter in supersonic flow, based on piston theory. The effect of different types of boundary conditions on the nonlinear vibration and linearized flutter behavior of cylindrical shells is illustrated for several characteristic cases.

1.
Hui
,
D.
, 1984, “
Influence of Geometric Imperfections and In-Plane Constraints on Nonlinear Vibrations of Simply Supported Cylindrical Panels
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
383
390
.
2.
Chia
,
C.-Y.
, 1987, “
Non-Linear Free Vibration and Postbuckling of Symmetrically Laminated Orthotropic Imperfect Shallow Cylindrical Panels With Two Adjacent Edges Simply Supported and the Other Edges Clamped
,”
Int. J. Solids Struct.
0020-7683,
23
(
8
), pp.
1123
1132
.
3.
Elishakoff
,
I.
,
Birman
,
V.
, and
Singer
,
J.
, 1987, “
Small Vibrations of an Imperfect Panel in the Vicinity of a Non-Linear Static State
,”
J. Sound Vib.
0022-460X,
114
, pp.
57
63
.
4.
Librescu
,
L.
,
Lin
,
W.
,
Nemeth
,
M. P.
, and
Starnes
,
J. H.
, 1996, “
Vibration of Geometrically Imperfect Panels Subjected to Thermal and Mechanical Loads
,”
J. Spacecr. Rockets
0022-4650,
33
(
2
), pp.
285
291
.
5.
Amabili
,
M.
, 2006, “
Theory and Experiments for Large-Amplitude Vibrations of Circular Cylindrical Panels With Geometric Imperfections
,”
J. Sound Vib.
0022-460X,
298
(
1-2
), pp.
43
72
.
6.
Pellicano
,
F.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
, 2002, “
Effect of the Geometry on the Non-Linear Vibration of Circular Cylindrical Shells
,”
Int. J. Non-Linear Mech.
0020-7462,
37
(
7
), pp.
1181
1198
.
7.
Amabili
,
M.
, 2003, “
Theory and Experiments for Large-Amplitude Vibrations of Empty and Fluid-Filled Circular Cylindrical Shell With Imperfections
,”
J. Sound Vib.
0022-460X,
262
, pp.
921
975
.
8.
Amabili
,
M.
, 2003, “
Nonlinear Vibrations of Circular Cylindrical Shells With Different Boundary Conditions
,”
AIAA J.
0001-1452,
41
(
6
), pp.
119
130
.
9.
Amabili
,
M.
, and
Païdoussis
,
M. P.
, 2003, “
Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, With and Without Fluid-Structure Interaction
,”
Appl. Mech. Rev.
0003-6900,
56
(
4
), pp.
349
381
.
10.
Olson
,
M. D.
, and
Fung
,
Y. C.
, 1966, “
Supersonic Flutter of Circular Cylindrical Shells Subjected to Internal Pressure and Axial Compression
,”
AIAA J.
0001-1452,
4
(
5
), pp.
858
864
.
11.
Horn
,
W.
,
Barr
,
G. W.
,
Carter
,
L.
, and
Stearman
,
R. O.
, 1974, “
Recent Contributions to Experiments on Cylindrical Shell Panel Flutter
,”
AIAA J.
0001-1452,
12
, pp.
1481
1490
.
12.
Dowell
,
E. H.
, 1975,
Aeroelasticity of Plates and Shells
,
Noordhoff
, Leyden, The Netherlands.
13.
Librescu
,
L.
, 1975,
Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures
,
Noordhoff International Publishing
, Leyden, The Netherlands.
14.
Amabili
,
M.
, and
Pellicano
,
F.
, 2001, “
Nonlinear Supersonic Flutter of Circular Cylindrical Shells
,”
AIAA J.
0001-1452,
39
(
4
), pp.
564
573
.
15.
Amabili
,
M.
, and
Pellicano
,
F.
, 2002, “
Multimode Approach to Nonlinear Supersonic Flutter of Imperfect Circular Cylindrical Shells
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
117
129
.
16.
Barr
,
G. W.
, and
Stearman
,
R. O.
, 1969, “
Aeroelastic Stability Characteristics of Cylindrical Shells Considering Imperfections and Edge Constraint
,”
AIAA J.
0001-1452,
7
(
5
), pp.
912
919
.
17.
Arbocz
,
J.
, and
Hol
,
J. M. A. M.
, 1990, “
Koiter’s Stability Theory in a Computer-Aided Engineering (CAE) Environment
,”
Int. J. Solids Struct.
0020-7683,
26
(
9/10
), pp.
945
975
.
18.
Arbocz
,
J.
, and
Starnes
,
J. H.
, 2005. “
Hierarchical High-Fidelity Analysis Methodology for Buckling Critical Structures
,”
J. Aerosp. Eng.
0893-1321,
18
(
3
), pp.
168
178
.
19.
Jansen
,
E. L.
, 2004, “
A Comparison of Analytical-Numerical Models for Nonlinear Vibrations of Cylindrical Shells
,”
Comput. Struct.
0045-7949,
82
, pp.
2647
2658
.
20.
Jansen
,
E. L.
, 2003. “
Analytical-Numerical Models for Flutter of Cylindrical Shells in Supersonic Flow
,”
Computational Fluid and Solid Mechanics, Proc. of 2nd MIT Conference on Computational Fluid and Solid Mechanics
, pp.
1377
1380
.
K. J.
Bathe
, ed.,
Elsevier
, New York.
21.
Kalnins
,
A.
, 1964, “
Free Vibration of Rotationally Symmetric Shells
,”
J. Acoust. Soc. Am.
0001-4966,
36
, pp.
1355
1365
.
22.
Cohen
,
G.
, 1968, “
Computer Analysis of Asymmetric Buckling of Ring-Stiffened Orthotropic Shells of Revolution
,”
AIAA J.
0001-1452,
6
(
1
), pp.
141
149
.
23.
Liu
,
D. K.
, 1988, “
Nonlinear Vibrations of Imperfect Thin-Walled Cylindrical Shells
,” Ph.D. thesis, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands.
24.
Chen
,
J. C.
, and
Babcock
,
C. D.
, 1975, “
Nonlinear Vibrations of Cylindrical Shells
,”
AIAA J.
0001-1452,
13
(
7
), pp.
868
876
.
25.
Rehfield
,
L. W.
, 1973, “
Nonlinear Free Vibrations of Elastic Structures
,”
Int. J. Solids Struct.
0020-7683,
9
, pp.
581
590
.
26.
Wedel-Heinen
,
J.
, 1991, “
Vibrations of Geometrically Imperfect Beam and Shell Structures
,”
Int. J. Solids Struct.
0020-7683,
27
(
1
), pp.
29
47
.
27.
Jansen
,
E. L.
, 2001, Nonlinear Vibrations of Anisotropic Cylindrical Shells, Ph.D. thesis, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands.
28.
Jansen
,
E. L.
, 2007, “
The Effect of Geometric Imperfections on the Vibrations of Anisotropic Cylindrical Shells
,
Thin-Walled Struct.
0263-8231,
45
(
3
), pp.
274
282
.
29.
Cohen
,
G.
, 1968, “
Effect of a Nonlinear Prebuckling State on the Post-Buckling Behavior and Imperfection Sensitivity of Elastic Structures
,”
AIAA J.
0001-1452,
6
, pp.
1616
1620
.
30.
Hearn
,
A. C.
, 1993,
REDUCE User's Manual
, Version 3.5. RAND Publication CP78,
The Rand Corporation
, Santa Monica, CA.
31.
Booton
,
M.
, 1976, “
Buckling of Imperfect Anisotropic Cylinders under Combined Loading
,” UTIAS Report 203, Institute for Aerospace Studies, University of Toronto.
32.
Yamaki
,
N.
, 1984,
Elastic Stability of Circular Cylindrical Shells
,
Elsevier
, Amsterdam, The Netherlands.
33.
Chen
,
J. C.
, 1972, Nonlinear Vibrations of Cylindrical Shells, Ph.D. thesis, California Institute of Technology, Pasadena.
34.
Evensen
,
D. A.
, and
Olson
,
M. D.
, 1967. “
Nonlinear Flutter of Circular Cylindrical Shell in Supersonic Flow
,” NASA TN D-4265.
35.
Ganapathi
,
M.
,
Varadan
,
T. K.
, and
Jijen
,
J.
, 1994, “
Field-Consistent Element Applied to Flutter Analysis of Circular Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
171
(
4
), pp.
509
527
.
You do not currently have access to this content.