Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.

1.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
R21
.
2.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain J. Brit. Soc. Strain Measurement
0039-2103,
40
, pp.
49
58
.
3.
duToit
,
N. E.
, and
Wardle
,
B. L.
, 2006, “
Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters
,”
Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Newport, RI
, pp.
1
20
.
4.
Jeon
,
Y. B.
,
Sood
,
R.
,
Jeong
,
J. H.
, and
Kim
,
S.
, 2005, “
MEMS Power Generator With Transverse Mode Thin Film PZT
,”
Sens. Actuators, A
0924-4247,
122
, pp.
16
22
.
5.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J. M.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sonsor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
6.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.
, 2005, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
1058-4587,
71
, pp.
121
160
.
7.
Lu
,
F.
,
Lee
,
H. P.
, and
Lim
,
S. P.
, 2004, “
Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
57
63
.
8.
Chen
,
S.-N.
,
Wang
,
G.-J.
, and
Chien
,
M.-C.
, 2006, “
Analytical Modeling of Piezoelectric Vibration-Induced Micro Power Generator
,”
Mechatronics
0957-4158,
16
, pp.
397
387
.
9.
Ajitsaria
,
J.
,
Choe
,
S. Y.
,
Shen
,
D.
, and
Kim
,
D. J.
, 2007, “
Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
447
454
.
10.
Stephen
,
N. G.
, 2006, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
0022-460X,
293
, pp.
409
425
.
11.
Fang
,
H.-B.
,
Liu
,
J.-Q.
,
Xu
,
Z.-Y.
,
Dong
,
L.
,
Chen
,
D.
,
Cai
,
B.-C.
, and
Liu
,
Y.
, 2006, “
A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting
,”
Chin. Phys. Lett.
0256-307X,
23
, pp.
732
734
.
12.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
1045-389X in press, doi: 10.1177/1045389X07085639.
13.
1987,
IEEE Standard on Piezoelectricity
, IEEE, New York.
14.
Williams
,
C. B.
, and
Yates
,
R. B.
, 1996, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
0924-4247,
52
, pp.
8
11
.
15.
Erturk
,
A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
J. Vibr. Acoust.
0739-3717, submitted.
16.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
, 1974,
Vibration Problems in Engineering
,
Wiley
,
New York
.
17.
Caughey
,
T. K.
, and
O’Kelly
,
M. E. J.
, 1965, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
583
588
.
18.
Timoshenko
,
S.
, and
Young
,
D. H.
, 1968,
Elements of Strength of Materials
,
Van Nostrand Reinhold
,
New York
.
19.
Schwartz
,
L.
, 1978,
Théorie des Distributions
,
Hermann
,
Paris, France
.
20.
Erturk
,
A.
, and
Inman
,
D. J.
, 2007, “
Mechanical Considerations for Modeling of Vibration-Based Energy Harvesters
,”
Proceedings of the ASME IDETC 21st Biennial Conference on Mechanical Vibration and Noise
,
Las Vegas, NV
, Sep. 4–7.
21.
Moheimani
,
S. O. R.
,
Fleming
,
A. J.
, and
Behrens
,
S.
, 2002, “
On the Feedback Structure of Wideband Piezoelectric Shunt Damping Systems
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
49
56
.
22.
Clough
,
R. W.
, and
Penzien
,
J.
, 1975,
Dynamics of Structures
,
Wiley
,
New York
.
You do not currently have access to this content.