An effective crack identification procedure has been developed based on the dynamic behavior of a Euler–Bernoulli cracked beam. It is very well known that the presence of a crack in a structure produces a change in its frequency response that can be used to determine the crack properties (position and size) solving what is called an inverse problem. In this work, such an inverse problem has been solved by the use of the classical optimization technique of minimizing the least square criterion applied to the closed-form expression for the frequencies obtained through the perturbation method. The advantage of this method with respect to the ones derived previously is that the knowledge of the material and its properties (Young’s modulus and mass density) is not necessary, not even the behavior of the uncracked element. The methodology has been successfully applied to a simply supported Euler–Bernoulli beam.

1.
Gudmundson
,
P.
, 1982, “
Eigenfrequency Changes of Structures Due to Cracks, Notches or Other Geometrical Changes
,”
J. Mech. Phys. Solids
0022-5096,
30
, pp.
339
353
.
2.
Dimarogonas
,
A. D.
, and
Papadopoulos
,
C.
, 1983, “
Vibrations of Cracked Shafts in Bending
,”
J. Sound Vib.
0022-460X,
91
, pp.
583
593
.
3.
Shen
,
M. H.
, and
Pierre
,
C.
, 1990, “
Natural Modes of Bernoulli–Euler Beams With Symmetric Cracks
,”
J. Sound Vib.
0022-460X,
138
, pp.
115
134
.
4.
Lee
,
H. P.
, and
Ng
,
T. Y.
, 1994, “
Natural Frequencies and Modes for the Flexural Vibration of a Cracked Beam
,”
Appl. Acoust.
0003-682X,
42
, pp.
151
163
.
5.
Cawley
,
P.
, and
Adams
,
R. D.
, 1979, “
The Locations of Defects in Structures From Measurements of Natural Frequencies
,”
J. Strain Anal.
0022-4758,
14
, pp.
49
57
.
6.
Shen
,
M. H.
, and
Taylor
,
J. E.
, 1991, “
An Identification Problem for Vibrating Cracked Beams
,”
J. Sound Vib.
0022-460X,
150
, pp.
457
484
.
7.
Suh
,
M. W.
,
Yu
,
J. M.
, and
Lee
,
J. H.
, 2000, “
Crack Identification Using Classical Optimization Technique
,”
Key Eng. Mater.
1013-9826,
183–187
, pp.
61
66
.
8.
Shim
,
M. B.
, and
Suh
,
M. W.
, 2002, “
A Study on Multiobjective Optimization Technique for Inverse and Crack Identification Problems
,”
Inverse Probl. Eng.
1068-2767,
10
, pp.
441
465
.
9.
Shim
,
M. B.
, and
Suh
,
M. W.
, 2003, “
Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment
,”
J. Sound Vib.
0022-460X,
262
, pp.
141
160
.
10.
Liang
,
R. Y.
,
Choy
,
F. K.
, and
Hu
,
K.
, 1991, “
Detection of Cracks in Beam Structures Using Measurements of Natural Frequencies
,”
J. Franklin Inst.
-Eng. Appl. Math 0016-0032,
328
, pp.
505
518
.
11.
Narkis
,
Y.
, 1994, “
Identification of Crack Location in Vibrating Simply Supported Beams
,”
J. Sound Vib.
0022-460X,
172
, pp.
549
558
.
12.
Nandwana
,
B. P.
, and
Maiti
,
S. K.
, 1997, “
Detection of Location and Size of a Crack in Stepped Cantilever Beam Based on Measurement of Natural Frequencies
,”
J. Sound Vib.
0022-460X,
203
, pp.
435
446
.
13.
Morassi
,
A.
, and
Rollo
,
M.
, 2001, “
Identification of Two Cracks in a Simply Supported Beam From Minimal Frequency Measurements
,”
J. Vib. Control
1077-5463,
7
, pp.
729
734
.
14.
Lele
,
S. P.
, and
Maiti
,
S. K.
, 2002, “
Modeling of Transverse Vibration of Short Beams for Crack Detection and Measurement of Crack Extension
,”
J. Sound Vib.
0022-460X,
257
, pp.
559
583
.
15.
Chang
,
Ch. Ch.
, and
Chen
,
L. W.
, 2003, “
Vibration Damage Detection of a Timoshenko Beam by Spatial Wavelet Based Approach
,”
Appl. Acoust.
0003-682X,
64
, pp.
1217
1240
.
16.
Kim
,
T. J.
,
Ryu
,
Y. S.
,
Cho
,
H. M.
, and
Stubbs
,
N.
, 2003, “
Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method
,”
Eng. Struct.
0141-0296,
25
, pp.
57
67
.
17.
Lin
,
H. P.
, 2004, “
Direct and Inverse Methods on Free Vibration Analysis of Simply Supported Beams With a Crack
,”
Eng. Struct.
0141-0296,
26
, pp.
427
436
.
18.
Loutridis
,
S.
,
Douka
,
E.
, and
Hadjileontiadis
,
L. J.
, 2005, “
Forced Vibration Behaviour and Crack Detection of Cracked Beams Using Instantaneous Frequency
,”
NDT & E Int.
,
38
, pp.
411
419
. 0963-8695
19.
Morassi
,
A.
, 2001, “
Identification of a Crack in a Rod Based on Changes in a Pair of Natural Frequencies
,”
J. Sound Vib.
0022-460X,
242
, pp.
577
596
.
20.
Dilena
,
M.
, and
Morassi
,
A.
, 2004, “
The Use of Antiresonances for Crack Detection in Beams
,”
J. Sound Vib.
0022-460X,
276
, pp.
195
214
.
21.
Karthikeyan
,
M.
,
Tiwari
,
R.
, and
Talukdar
,
S.
, 2007, “
Development of a Technique to Locate and Quantify a Crack in a Beam Based on Modal Parameters
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
129
, pp.
390
395
.
22.
Karthikeyan
,
M.
,
Tiwari
,
R.
, and
Talukdar
,
S.
, 2008, “
Development of a Novel Algorithm for Crack Detection, Localization, and Sizing in a Beam Based on Forced Response Measurements
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
130
, p.
021002
.
23.
Zhong
,
S.
and
Oyaidiji
,
S. O.
, 2008, “
Identification of Cracks in Beams With Auxiliary Mass Spatial Probing by Stationary Wavelet Transform
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
130
, p.
041001
.
24.
Morassi
,
A.
, 1993, “
Crack-Induced Changes in Eigenfrequencies of Beam Structures
,”
J. Eng. Mech.
0733-9399,
119
, pp.
1798
1803
.
25.
Dilena
,
M.
, and
Morassi
,
A.
, 2006, “
Damage Detection in Discrete Vibrating Systems
,”
J. Sound Vib.
0022-460X,
289
, pp.
830
850
.
26.
Christides
,
S.
, and
Barr
,
A. S. D.
, 1984, “
One-Dimensional Theory of Cracked Bernoulli–Euler Beams
,”
Int. J. Mech. Sci.
0020-7403,
26
, pp.
639
648
.
27.
Shen
,
M. H.
, and
Pierre
,
C.
, 1994, “
Free Vibrations of Beams With a Single-Edge Crack
,”
J. Sound Vib.
0022-460X,
170
, pp.
237
259
.
28.
Chondros
,
T. G.
, and
Dimarogonas
,
D.
, 1998, “
A Continuous Cracked Beam Vibration Theory
,”
J. Sound Vib.
0022-460X,
215
, pp.
17
34
.
29.
Freund
,
L. B.
and
Herrmann
,
G.
, 1976, “
Dynamic Fracture of a Beam or Plate in Bending
,”
J. Appl. Mech.
0021-8936,
76-APM-15
, pp.
112
116
.
30.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
, 1978, “
A Vibration Technique for Non-Destructive Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
0022-2542,
20
, pp.
93
100
.
31.
Bamnios
,
G.
, and
Trochides
,
A.
, 1995, “
Dynamic Behavior of a Cracked Cantilever Beam
,”
Appl. Acoust.
0003-682X,
45
, pp.
97
112
.
32.
Boltezar
,
M.
,
Stancar
,
B.
, and
Kuhelj
,
A.
, 1998, “
Identification of Transverse Crack Location in Exural Vibrations of Free-Free Beams
,”
J. Sound Vib.
0022-460X,
211
, pp.
729
734
.
33.
Fernández-Sáez
,
J.
,
Rubio
,
L.
, and
Navarro
,
C.
, 1999, “
Approximate Calculation of the Fundamental Frequency for Bending Vibrations of Cracked Beams
,”
J. Sound Vib.
0022-460X,
225
, pp.
345
352
.
34.
Fernández-Sáez
,
J.
, and
Navarro
,
C.
, 2002, “
Fundamental Frequency of Cracked Beams: An Analytical Approach
,”
J. Sound Vib.
0022-460X,
256
, pp.
17
31
.
35.
Aydin
,
K.
, 2008, “
Vibratory Characteristics of Euler–Bernoulli Beams With an Arbitrary Number of Cracks Subjected to Axial Load
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
14
(
4
), pp.
485
510
.
36.
Loya
,
J. A.
,
Rubio
,
L.
, and
Fernández-Sáez
,
J.
, 2006, “
Natural Frequencies for Bending Vibrations of Timoshenko Cracked Beams
,”
J. Sound Vib.
0022-460X,
290
, pp.
640
653
.
37.
Aydin
,
K.
, 2007, “
Vibratory Characteristics of Axially-Loaded Timoshenko Beams With Arbitrary Number of Cracks
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
129
, pp.
341
354
.
38.
Hasan
,
W. M.
, 1995, “
Crack Detection From the Variation of Eigenfrequencies of a Beam on Elastic Foundation
,”
Eng. Fract. Mech.
0013-7944,
52
, pp.
409
421
.
39.
Rubio
,
L.
,
de Luna
,
S.
,
Fernández-Sáez
,
J.
, and
Navarro
,
C.
, 2000, “
Cálculo de las Frecuencias Propias de Vigas Fisuradas
,”
Anales de Ingeniería Mecánica
,
13
(
2
), pp.
745
754
.
40.
Rizos
,
P. F.
,
Aspragathos
,
N.
, and
Dimarogonas
,
D.
, 1990, “
Identification of Crack Location and Magnitude in a Cantilever Beam From the Vibration Modes
,”
J. Sound Vib.
0022-460X,
138
, pp.
381
388
.
41.
Stubbs
,
N.
, and
Kim
,
Y. J.
, 1996, “
Damage Localization in Structures Without Baseline Modal Parameters
,”
AIAA J.
0001-1452,
34
, pp.
1644
1649
.
42.
Kim
,
T. J.
, and
Stubbs
,
N.
, 2002, “
Improved Damage Identification Method Based on Modal Information
,”
J. Sound Vib.
0022-460X,
252
, pp.
223
238
.
43.
Tada
,
H.
,
Paris
,
P.
, and
Irwin
,
G.
, 1985,
The Stress Analysis of Cracks Handbook
, 2nd ed.,
Paris Productions, Inc.
,
St Louis
.
44.
Rao
,
S. S.
, 1990,
Mechanical Vibrations
, 2nd ed.,
Addison-Wesley
,
New York
.
45.
General Algebraic Modeling System
,” http://www.gams.comhttp://www.gams.com.
46.
Castillo
,
E.
,
Conejo
,
A.
,
Pedregal
,
P.
,
García
,
R.
, and
Alguacil
,
N.
, 2001, “
Building and Solving Mathematical Programming Models in Engineering and Science
,”
Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts
,
John Wiley and Sons, Inc.
,
New York
.
47.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design With Applications
,
McGraw-Hill
,
New York
.
48.
Abadie
,
J.
, and
Carpentier
,
J.
, 1969,
Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints in Optimization
,
R. Fletcher /Cambridge University Press
,
New York
.
49.
Drud
,
A. S.
, 1985, “
A GRG Code for Large Sparse Dynamic Nonlinear Optimization Problems
,”
Math. Program.
0025-5610,
31
, pp.
153
191
.
50.
Drud
,
A. S.
, 1992, “
CONOPT—A Large-Scale GRG Code
,”
ORSA J. Comput.
0899-1499,
6
, pp.
207
216
.
51.
Khiem
,
N. T.
, and
Lien
,
T. V.
, 2004, “
Multi-Crack Detection for Beam by the Natural Frequencies
,”
J. Sound Vib.
0022-460X,
273
, pp.
175
184
.
You do not currently have access to this content.