Experimental investigations of synchronization of linearly diffusive coupled van der Pol electronic oscillators are reported. In addition to in- and antiphase stable oscillations, shifted symmetric and asymmetric trajectories have been observed experimentally. However, the experiments have failed to produce stable chaotic behavior in these systems. Extended numeric simulations are then performed to show that the previously believed chaotic region is a transient numeric effect, thereby validating experimental results.

1.
Rompala
,
K.
,
Rand
,
R.
, and
Howland
,
H.
, 2007, “
Dynamics of Three Coupled van der Pol Oscillators With Application to Circadian Rhythms
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
5
), pp.
794
803
.
2.
Santos
,
A. D.
,
Lopes
,
S.
, and
Viana
,
R.
, 2004, “
Rhythm Synchronization and Chaotic Modulation of Coupled van der Pol Oscillators in a Model for the Heartbeat
,”
Physica A
0378-4371,
338
(
3–4
), pp.
335
355
.
3.
Kawahara
,
T.
, 1980, “
Coupled van der Pol Oscillators—A Model of Excitatory and Inhibitory Neural Interactions
,”
Biol. Cybern.
0340-1200,
39
(
1
), pp.
37
43
.
4.
Palm
,
E.
, and
Tveitereid
,
N.
, 1980, “
On Coupled van der Pol Oscillators
,”
Q. J. Mech. Appl. Math.
0033-5614,
33
(
3
), pp.
267
276
.
5.
Cohen
,
A. H.
,
Holmes
,
P. J.
, and
Rand
,
R. H.
, 1982, “
The Nature of the Coupling Between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: A Mathematical Model
,”
J. Math. Biol.
0303-6812,
13
(
3
), pp.
345
369
.
6.
Low
,
L.
,
Reinhall
,
P.
,
Storti
,
D.
, and
Goldman
,
E.
, 2006, “
Coupled van der Pol Oscillators as a Simplified Model for Generation of Neural Patterns for Jellyfish Locomotion
,”
Struct. Control Health Monit.
1545-2255,
13
(
1
), pp.
417
429
.
7.
Zielifiska
,
T.
, 1996, “
Coupled Oscillators Utilised as Gait Rhythm Generators of a Two-Legged Walking Machine
,”
Biol. Cybern.
0340-1200,
74
(
3
), pp.
263
273
.
8.
Dutra
,
M.
,
Filho
,
A. D. P.
, and
Romano
,
V.
, 2003, “
Modeling of a Bipedal Locomotor Using Coupled Nonlinear Oscillators of van der Pol
,”
Biol. Cybern.
0340-1200,
88
(
4
), pp.
286
292
.
9.
Linkens
,
D. A.
, 1976, “
Stability of Entrainment Conditions for a Particular Form of Mutually Coupled van der Pol Oscillators
,”
IEEE Trans. Circ. Syst.
,
23
(
2
), pp.
113
121
.
10.
Rand
,
R.
, and
Holmes
,
P.
, 1980, “
Bifurcation of Periodic Motions Into Weakly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
15
, pp.
387
399
.
11.
Kouda
,
A.
, and
Mori
,
S.
, 1982, “
Mode Analysis of a System of Mutually Coupled van der Pol Oscillators With Coupling Delay
,”
Int. J. Non-Linear Mech.
0020-7462,
17
(
4
), pp.
267
276
.
12.
Pastor-Diaz
,
I.
, and
López-Fraguas
,
A.
, 1995, “
Dynamics of Two Coupled van der Pol Oscillators
,”
Phys. Rev. E
1063-651X,
52
(
2
), pp.
1480
1489
.
13.
Storti
,
D. W.
, and
Reinhall
,
P.
, 2000, “
Phase Locked Mode Stability for Coupled van der Pol Oscillators
,”
Trans. ASME, J. Vib. Accoust.
,
122
, pp.
318
323
.
14.
Low
,
L.
,
Reinhall
,
P.
, and
Storti
,
D.
, 2003, “
An Investigation of Coupled van der Pol Oscillators
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
125
, pp.
162
169
.
15.
Bi
,
Q.
, 2005, “
Dynamical Analysis of Two Coupled Parametrically Excited van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
1
), pp.
35
54
.
16.
Li
,
X.
,
Li
,
J.
, and
Hansen
,
C.
, 2006, “
Dynamics of Two Delay Coupled van der Pol Oscillators
,”
Mech. Res. Commun.
0093-6413,
33
(
5
), pp.
614
627
.
17.
Uwate
,
Y.
, and
Nishio
,
Y.
, 2007, “
Synchronization Phenomena in van der Pol Oscillators Coupled by a Time-Varying Resistor
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
17
(
10
), pp.
3565
3569
.
18.
Chedjou
,
J.
,
Fotsin
,
H.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Analog Simulation of the Dynamics of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
IEEE Trans. Circ. Syst. I: Fund. Theor. Appl.
,
48
(
6
), pp.
748
757
.
19.
Itohi
,
M.
, 2001, “
Synthesis of Electronic Circuits for Simulating Nonlinear Dynamics
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
(
3
), pp.
603
653
.
You do not currently have access to this content.