Galloping of structures such as transmission lines and bridges is a classical aeroelastic instability that has been considered as harmful and destructive. However, there exists potential to harness useful energy from this phenomenon. This paper focuses on harvesting wind energy that is being transferred to a galloping beam. The beam has a rigid tip body with a D-shaped cross section. Piezoelectric sheets are bonded on the top and bottom surface of the beam. During galloping, vibrational motion is input to the system due to aerodynamic forces on the D-section, which is converted into electrical energy by the piezoelectric (PZT) sheets. The relative importance of various parameters of the system such as wind speed, material properties of the beam, electrical load and beam’s natural frequency are discussed. Experimental and analytical investigations of dynamic response and power output are performed on a representative device. A maximum output power of 1.14 mW was measured at a wind velocity of 10.5 mph on a prototype device of length 235 mm and width 25 mm. A potential application for this device is to power wireless sensor networks on outdoor structures such as bridges and buildings.

References

1.
Hartog
,
J. P.
,
Mechanical Vibrations
(
McGraw-Hill
,
London
, 1956), pp.
282
309
.
2.
Alonso
,
G.
,
Meseguera
,
J.
, and
Pérez-Grandea
,
I.
, 2007,
“Galloping Stability of Triangular Cross-Sectional Bodies: A Systematic Approach,”
J. Wind Eng. Ind. Aerodyn.
,
95
, pp.
928
940
.
3.
Kazakevich
,
M. I.
, and
Vasilenko
,
A. G.
, 1996,
“Closed Analytical Solution for Galloping Aeroelastic Self-Oscillations,”
J. Wind Eng. Ind. Aerodyn.
,
65
, pp.
353
360
.
4.
Laneville
,
A.
,
Gartshore
,
I. S.
, and
Parkinson
,
G. V.
, 1977,
“An explanation of Some Effects of Turbulence on Bluff Bodies,” Proceedings of the Fourth International Conference on Wind Effects on Buildings and Structures, Cambridge
University Press, Cambridge
, UK, pp.
333
341
.
5.
Barrero-Gil
,
A.
,
Alonso
,
G.
, and
Sanz-Andres
,
A.
, 2010,
“Energy Harvesting from Transverse Galloping,”
J. Sound Vib.
,
329
(
14
), pp.
2873
2883
.
6.
Robbins
,
W. P.
,
Morris
,
D.
,
Marusic
,
I.
, and
Novak
,
T. O.
, 2006, “
Wind-Generated Electrical Energy Using Flexible Piezoelectric Materials
,”
IMECE2006-14050
,
ASME Publications-AD
, Vol.
71
, pp.
581
590
.
7.
Wang
,
D. A.
, and
Ko
,
H. H.
, 2010,
“Piezoelectric Energy Harvesting from Flow-Induced Vibration,”
J. Micromechan. Microeng.
,
20
(
2
).
8.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004,
“Estimation Of Electric Charge Output For Piezoelectric Energy Harvesting,”
Strain
,
40
(
2
), pp.
49
58
.
9.
Umeda
,
M.
,
Nakamura
,
K.
, and
Ueha
,
S.
, 1996,
“Analysis of The Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator,”
Jpn. J. Appl. Phys.
,
35
, pp.
3267
3273
.
10.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J. M.
, 2004,
Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations
,
Kluwer Academic
,
Norwell, MA
, pp.
56
, Appendix A.
11.
Ottman
,
G. K.
,
Hofmann
,
H. F.
, and
Lesieutre
,
G. A.
, 2003,
“Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode,”
IEEE Trans. Power Electron.
,
18
(
2
), pp.
696
703
.
12.
Ajitsaria
,
J.
,
Choe
,
S. Y.
,
Shen
,
D.
, and
Kim
,
D. J.
, 2007,
“Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation,”
Smart Mater. Struct.
,
16
, pp.
447
454
.
13.
Tan
,
Y. K.
, and
Panda
,
S. K.
, 2007,
“A Novel Piezoelectric Based Wind Energy Harvester for Low-power Autonomous Wind Speed Sensor
, Proceedings of the 33th Annual IEEE Conference of Industrial Electronics Society (IECON′07), Taipei, Taiwan.
14.
Estrin
,
D.
,
Govindan
,
R.
, and
Heidemann
,
J.
, Eds., 2000,
“Special Issue on Embedding the Internet,”
Commun. ACM
,
43
(
5
).
15.
Badrinath
,
B. R.
,
Srivastava
,
M.
,
Mills
,
K.
,
Scholtz
,
J.
, and
Sollins
,
K.
, Eds., 2000, Special Issue on Smart Spaces and Environments, IEEE Personal Communications,
16.
Wang
,
Y.
,
Kenneth
,
J. L.
,
Lynch
,
J. P.
,
Fraser
,
M.
,
Law
,
K.
, and
Elgamal
,
A.
, 2006, “Vibration Monitoring of the Voigt Bridge using Wired and Wireless Monitoring Systems,” The Proceedings of 4th China-Japan-US Symposium on Structural Control and Monitoring, Oct 16–17, Hangzhou, China.
17.
Mainwaring
,
A.
,
Polastre
,
J.
,
Szewczyk
,
R.
,
Culler
,
D.
, and
Anderson
,
J.
, 2000,
“Wireless Sensor Networks For Habitat Monitoring,”
Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, pp.
88
97
.
18.
Ratkowski
,
J.
, “Experiments with Galloping Spans,” 1961, AIEE Winter General Meeting New York, NY, Paper 62.
19.
Lee
,
P.C.Y.
, 1991,
“A Variational Principle for the Equations of Piezoelectromagnetism in Elastic Dielectric Crystals,”
J. Appl. Phys.
,
69
(
11
), pp.
7470
7473
.
20.
Nisse
,
E.P.E.
, 1967,
“Variational Method for Electroelastic Vibration Analysis,”
IEEE Trans. Sonics Ultrason.
,
SU-14
(
4
), pp.
153
159
.
21.
IEEE Standard on Piezoelectricity, 1987, ANSI/IEEE, Std. 176.
22.
Product Information, 2010, Piezo Systems Inc., 65 Tower Office Park, Woburn, MA 01801,Product Information, 2010, Piezo Systems Inc., 65 Tower Office Park, Woburn, MA 01801, USA, SA, http://www.piezo.com/prodsheet2sq5H.htmlhttp://www.piezo.com/prodsheet2sq5H.html.
23.
Schwartz
,
M. N.
, and
Elliot
,
D. L.
,
“United States Areal Wind Resource Assessment,” Report PNL-SA-21606, Presented at the Alternate Fuels and the Environment Symposium
, March 28 − April 2, 1993, Denver, CO.
You do not currently have access to this content.