This paper clarifies the reason why error occurs in the mass lumping procedure and presents a new approach to construct lumped mass matrices for Euler–Bernoulli beam elements, which contain both translational and rotational degrees of freedom. Lumped mass matrices provide the proper translational inertia but change the rotational inertia compared with the continuous mass representation. Therefore, the optimal lumped mass matrices are expressed through the adoption of a variable rotational inertia parameter to counterbalance the decreased or increased rotational inertia. The goal of this study is to propose lumped mass matrices to minimize the modal error for beam elements. The accuracy of the new mass matrices is validated by a number of numerical tests.

References

1.
Archer
,
J. S.
,
1965
, “
Consistent Matrix Formulation for Structural Analysis Using Finite Element Techniques
,”
AIAA J.
,
3
(
10
), pp.
1910
1918
.10.2514/3.3279
2.
Goudreau
,
G. L.
and
Taylor
,
R. L.
,
1972
, “
Evaluation of Numerical Integration Methods in the Elastodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
2
(
1
), pp.
69
97
.10.1016/0045-7825(73)90023-6
3.
Wu
,
S. R.
,
2006
, “
Lumped Mass Matrix in Explicit Finite Element Method for Transient Dynamics of Elasiticity
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44
), pp.
5983
5994
.10.1016/j.cma.2005.10.008
4.
Laier
,
J. E.
,
2007
, “
Mass Lumping, Dispersive Properties and Bifurcation of Timoshenko's Flexural Waves
,”
Adv. Eng. Software
,
38
(
8
), pp.
547
551
.10.1016/j.advengsoft.2006.08.018
5.
Laier
,
J. E.
,
1998
, “
Hermitian Lumped Mass Matrix Formulation for Flexural Wave Propagation
,”
Commun. Numer. Methods Eng.
,
14
(
1
), pp.
43
49
10.1002/(SICI)1099-0887(199801)14:1%3C43::AID-CNM132%3E3.0.CO;2-A.
6.
Key
,
S. W.
and
Beisinger
,
Z. E.
,
1971
, “
The Transient Dynamic Analysis of Thin Shells in the Finite Element Method
,”
3rd Conference on Matrix Methods in Structural Mechanics
, Wright-Patterson Air Force Base, OH, October 19–21.
7.
Li
,
S.
,
Hu
,
J. J.
,
Zhai
,
C. H.
, and
Xie
,
L. L.
,
2012
, “
Static, Vibration and Transient Dynamic Analyses by Beam Element With Adaptive Displacement Interpolation Functions
,”
Math. Probl. Eng.
,
2012
, pp.
202719
10.1155/2012/212709.
8.
Hinton
,
E.
,
Rock
,
T.
, and
Zienkiewicz
,
O. C.
,
1976
, “
A Note on Mass Lumping and Related Processes in the Finite Element Method
,”
Earthquake Eng. Struct. Dyn.
,
4
(
3
), pp.
245
249
.10.1002/eqe.4290040305
9.
Zienkiewicz
,
O. C.
and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: The Basis
, 5th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
10.
Pan
,
W.
and
Haug
,
E. J.
,
1998
, “
Optimal Inertia Lumping From Modal Mass Matrices for Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1
), pp.
171
191
.10.1016/S0045-7825(98)00011-5
11.
Pan
,
W.
and
Haug
,
E. J.
,
1999
, “
Flexible Multibody Dynamic Simulation Using Optimal Lumped Inertia Matrices
,”
Comput. Methods Appl. Mech. Eng.
,
173
(
1
), pp.
189
200
.10.1016/S0045-7825(98)00268-0
12.
Archer
,
G. C.
and
Whalen
,
T. M.
,
2005
, “
Development of Rotationally Diagonal Mass Matrices for Plate and Beam Elements
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
8
), pp.
675
689
.10.1016/j.cma.2003.08.015
13.
Belytschko
,
T.
and
Mindle
,
W. L.
,
1980
, “
Flexural Wave Propagation Behavior of Lumped Mass Approximations
,”
Comput. Struct.
,
12
(
6
), pp.
805
812
.10.1016/0045-7949(80)90017-6
14.
Felippa
,
C. A.
,
2013
, “
Introduction to Finite Element Methods
,” Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO, http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
15.
Hansson
,
P. A.
and
Saderg
,
G.
,
1997
, “
Mass Matrices by Minimization of Modal Errors
,”
Int. J. Numer. Methods Eng.
,
40
(
22
), pp.
4259
4271
.10.1002/(SICI)1097-0207(19971130)40:22<4259::AID-NME262>3.0.CO;2-P
16.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2005
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
John Wiley and Sons
,
New York
.
17.
Malkus
,
D. S.
and
Plesha
,
M. E.
,
1986
, “
Zero and Negative Masses in Finite Element Vibration and Transient Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
3
), pp.
281
306
.10.1016/0045-7825(86)90002-2
You do not currently have access to this content.