Recent studies have demonstrated that the energetic vibrations of strategically designed negative stiffness inclusions may lead to large and adaptable damping in structural/material systems. Many researchers examine these features using models of bistable elements. From the viewpoint of system integration, bistable, negative stiffness elements often interface with positive stiffness elastic members. Under such conditions, the structural/material system may exhibit coexisting metastable states. In other words, the macroscopic displacement/strain remains fixed while the reaction force may vary due to internal change, similar to a phase transition. This coexistence of metastable states is not manifested in an individual (stand-alone) bistable element. Although the static and low frequency linear dynamics of structural/material systems possessing coexisting metastable states have been explored, much remains to be understood regarding the dynamics and energy dissipation characteristics of such systems when excited near resonance, where nonlinear dynamics are more easily activated and damping design is of greater importance. Thus, to effectively elucidate the enhanced versatility of damping properties afforded by exploiting negative stiffness inclusions in structural/material systems, this research investigates a mechanical module which leverages a coexistence of metastable states: an archetypal building block for system assembly. The studies employ analytical, numerical, and experimental findings to probe how near-resonant excitation can trigger multiple dynamic states, each resulting in distinct energy dissipation features. It is shown that, for lightly damped metastable mechanical modules, the effective energy dissipation may be varied across orders of magnitude via tailoring design and excitation parameters.

References

1.
Lakes
,
R. S.
,
2001
, “
Extreme Damping in Compliant Composites With a Negative-Stiffness Phase
,”
Philos. Mag. Lett.
,
81
(
2
), pp.
95
100
.
2.
Wang
,
Y. C.
, and
Lakes
,
R. S.
,
2005
, “
Composites With Inclusions of Negative Bulk Modulus: Extreme Damping and Negative Poisson's Ratio
,”
J. Compos. Mater.
,
39
(
18
), pp.
1645
1657
.
3.
Klatt
,
T.
, and
Haberman
,
M. R.
,
2013
, “
A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-on-Large Multiscale Material Model
,”
J. Appl. Phys.
,
114
(
3
), p.
033503
.
4.
Kochmann
,
D. M.
,
2014
, “
Stable Extreme Damping in Viscoelastic Two-Phase Composites With Non-Positive-Definite Phases Close to the Loss of Stability
,”
Mech. Res. Commun.
,
58
, pp.
36
45
.
5.
Barbarino
,
S.
,
Pontecorvo
,
M. E.
, and
Gandhi
,
F. S.
,
2012
, “
Energy Dissipation of a Bi-Stable von-Mises Truss Under Harmonic Excitation
,”
AIAA
Paper No. 2012-1712.
6.
Johnson
,
D. R.
,
Thota
,
M.
,
Semperlotti
,
F.
, and
Wang
,
K. W.
,
2013
, “
On Achieving High and Adaptable Damping Via a Bistable Oscillator
,”
Smart Mater. Struct.
,
22
(
11
), p.
115027
.
7.
Kashdan
,
L.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Wilson
,
P. S.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS
,”
Rapid Prototyping J.
,
18
(
3
), pp.
194
200
.
8.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration Isolation and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
9.
Dong
,
L.
, and
Lakes
,
R. S.
,
2013
, “
Advanced Damper With High Stiffness and High Hysteresis Damping Based on Negative Structural Stiffness
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2416
2423
.
10.
Nadkarni
,
N.
,
Daraio
,
C.
, and
Kochmann
,
D. M.
,
2014
, “
Dynamics of Periodic Mechanical Structures Containing Bistable Elastic Elements: From Elastic to Solitary Wave Propagation
,”
Phys. Rev. E
,
90
(
2
), p.
023204
.
11.
Cohen
,
T.
, and
Givli
,
S.
,
2014
, “
Dynamics of a Discrete Chain of Bi-Stable Elements: A Biomimetic Shock Absorbing Mechanism
,”
J. Mech. Phys. Solids
,
64
, pp.
426
439
.
12.
Lakes
,
R. S.
, and
Drugan
,
W. J.
,
2002
, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness Phase?
J. Mech. Phys. Solids
,
50
(
5
), pp.
979
1009
.
13.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories
,
World Scientific Publishing
,
Hackensack, NJ
.
14.
Virgin
,
L. N.
,
2007
,
Vibration of Axially Loaded Structures
,
Cambridge University Press
,
Cambridge, UK
.
15.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
, 4th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
16.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
,
New York
.
17.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
18.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(
5
), p.
053903
.
19.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, UK
.
20.
Wiebe
,
R.
,
Virgin
,
L. N.
,
Stanciulescu
,
I.
,
Spottswood
,
S. M.
, and
Eason
,
T. G.
,
2012
, “
Characterizing Dynamic Transitions Associated With Snap-Through: A Discrete System
,”
J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011010
.
You do not currently have access to this content.