An elastic metamaterial with a low-frequency passband is proposed by imitating a lattice system with linear on-site potential. It is shown that waves can only propagate in the tunable passband. Then, two kinds of elastic metamaterials with double passbands are designed. Great wave attenuation performance can be obtained at frequencies between the two passbands for locally resonant type metamaterials, and at both low and high frequencies for the diatomic type metamaterials. Finally, the strategy to design two-dimensional (2D) metamaterials is demonstrated. The present method can be used to design new types of small-size waveguides, filters, and other devices for elastic waves.

References

1.
Pendry
,
J. B.
,
Holden
,
A. J.
,
Stewart
,
W. J.
, and
Youngs
,
I.
,
1996
, “
Extremely Low Frequency Plasmons in Metallic Mesostructures
,”
Phys. Rev. Lett.
,
76
(
25
), pp.
4773
4776
.
2.
Pendry
,
J. B.
,
Holden
,
A. J.
,
Robbins
,
D. J.
, and
Stewart
,
W. J.
,
1999
, “
Magnetism From Conductors and Enhanced Nonlinear Phenomena
,”
IEEE Trans. Microwave Theory Tech.
,
47
(
11
), pp.
2075
2084
.
3.
Smith
,
D. R.
,
Padilla
,
W. J.
,
Vier
,
D. C.
,
Nemat-Nasser
,
S. C.
, and
Schultz
,
S.
,
2000
, “
Composite Medium With Simultaneously Negative Permeability and Permittivity
,”
Phys. Rev. Lett.
,
84
(
18
), pp.
4184
4187
.
4.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
055602
.
5.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
6.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
.
7.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
.
8.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2010
, “
Composite Acoustic Medium With Simultaneously Negative Density and Modulus
,”
Phys. Rev. Lett.
,
104
(
5
), p.
054301
.
9.
Liu
,
X. N.
,
Hu
,
G. K.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
10.
Yang
,
M.
,
Ma
,
G.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2013
, “
Coupled Membranes With Doubly Negative Mass Density and Bulk Modulus
,”
Phys. Rev. Lett.
,
110
(
13
), p.
134301
.
11.
Wu
,
Y.
,
Lai
,
Y.
, and
Zhang
,
Z. Q.
,
2011
, “
Elastic Metamaterials With Simultaneously Negative Effective Shear Modulus and Mass Density
,”
Phys. Rev. Lett.
,
107
(
10
), p.
105506
.
12.
Lai
,
Y.
,
Wu
,
Y.
,
Sheng
,
P.
, and
Zhang
,
Z. Q.
,
2011
, “
Hybrid Elastic Solids
,”
Nat. Mater.
,
10
(
8
), pp.
620
624
.
13.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. London, Ser. A
,
463
(
2079
), pp.
855
880
.
14.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
15.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Theoretical Investigation of the Behavior of an Acoustic Metamaterial With Extreme Young's Modulus
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2070
2081
.
16.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.
17.
Ambati
,
M.
,
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Surface Resonant States and Superlensing in Acoustic Metamaterials
,”
Phys. Rev. B
,
75
(
19
), p.
195447
.
18.
Zhou
,
X.
, and
Hu
,
G.
,
2011
, “
Superlensing Effect of an Anisotropic Metamaterial Slab With Near-Zero Dynamic Mass
,”
Appl. Phys. Lett.
,
98
(
26
), p.
263510
.
19.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2010
, “
Investigation of the Negative-Mass Behaviors Occurring Below a Cut-Off Frequency
,”
New J. Phys.
,
12
(
10
), p.
103025
.
20.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
21.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
.
22.
Liu
,
Y.
,
Su
,
X.
, and
Sun
,
C. T.
,
2015
, “
Broadband Elastic Metamaterial With Single Negativity by Mimicking Lattice Systems
,”
J. Mech. Phys. Solids
,
74
, pp.
158
174
.
23.
Marques
,
R.
,
Martel
,
J.
,
Mesa
,
F.
, and
Medina
,
F.
,
2002
, “
Left-Handed-Media Simulation and Transmission of EM Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides
,”
Phys. Rev. Lett.
,
89
(
18
), p.
183901
.
24.
Eleftheriou
,
M.
,
Flach
,
S.
, and
Tsironis
,
G. P.
,
2003
, “
Breathers in One-Dimensional Nonlinear Thermalized Lattice With an Energy Gap
,”
Physica D
,
186
(
1
), pp.
20
26
.
25.
Hirsekorn
,
M.
,
Delsanto
,
P. P.
,
Leung
,
A. C.
, and
Matic
,
P.
,
2006
, “
Elastic Wave Propagation in Locally Resonant Sonic Material: Comparison Between Local Interaction Simulation Approach and Modal Analysis
,”
J. Appl. Phys.
,
99
(
12
), p.
124912
.
26.
Miklowitz
,
J.
,
1978
,
The Theory of Elastic Waves and Waveguides
,
North-Holland Publishing Company
,
Amsterdam
.
27.
Berenger
,
J.
,
1994
, “
A Perfectly Matched Layer for the Absorption of Electromagnetic Waves
,”
J. Comput. Phys.
,
114
(
2
), pp.
185
200
.
28.
Hastings
,
F. D.
,
Schneider
,
J. B.
, and
Broschat
,
S. L.
,
1996
, “
Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3061
3069
.
You do not currently have access to this content.