An elastic metamaterial with a low-frequency passband is proposed by imitating a lattice system with linear on-site potential. It is shown that waves can only propagate in the tunable passband. Then, two kinds of elastic metamaterials with double passbands are designed. Great wave attenuation performance can be obtained at frequencies between the two passbands for locally resonant type metamaterials, and at both low and high frequencies for the diatomic type metamaterials. Finally, the strategy to design two-dimensional (2D) metamaterials is demonstrated. The present method can be used to design new types of small-size waveguides, filters, and other devices for elastic waves.
Issue Section:
Research Papers
References
1.
Pendry
, J. B.
, Holden
, A. J.
, Stewart
, W. J.
, and Youngs
, I.
, 1996
, “Extremely Low Frequency Plasmons in Metallic Mesostructures
,” Phys. Rev. Lett.
, 76
(25
), pp. 4773
–4776
.2.
Pendry
, J. B.
, Holden
, A. J.
, Robbins
, D. J.
, and Stewart
, W. J.
, 1999
, “Magnetism From Conductors and Enhanced Nonlinear Phenomena
,” IEEE Trans. Microwave Theory Tech.
, 47
(11
), pp. 2075
–2084
.3.
Smith
, D. R.
, Padilla
, W. J.
, Vier
, D. C.
, Nemat-Nasser
, S. C.
, and Schultz
, S.
, 2000
, “Composite Medium With Simultaneously Negative Permeability and Permittivity
,” Phys. Rev. Lett.
, 84
(18
), pp. 4184
–4187
.4.
Li
, J.
, and Chan
, C. T.
, 2004
, “Double-Negative Acoustic Metamaterial
,” Phys. Rev. E
, 70
(5
), p. 055602
.5.
Liu
, Z.
, Zhang
, X.
, Mao
, Y.
, Zhu
, Y. Y.
, Yang
, Z.
, Chan
, C. T.
, and Sheng
, P.
, 2000
, “Locally Resonant Sonic Materials
,” Science
, 289
(5485
), pp. 1734
–1736
.6.
Fang
, N.
, Xi
, D.
, Xu
, J.
, Ambati
, M.
, Srituravanich
, W.
, Sun
, C.
, and Zhang
, X.
, 2006
, “Ultrasonic Metamaterials With Negative Modulus
,” Nat. Mater.
, 5
(6
), pp. 452
–456
.7.
Ding
, Y.
, Liu
, Z.
, Qiu
, C.
, and Shi
, J.
, 2007
, “Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,” Phys. Rev. Lett.
, 99
(9
), p. 093904
.8.
Lee
, S. H.
, Park
, C. M.
, Seo
, Y. M.
, Wang
, Z. G.
, and Kim
, C. K.
, 2010
, “Composite Acoustic Medium With Simultaneously Negative Density and Modulus
,” Phys. Rev. Lett.
, 104
(5
), p. 054301
.9.
Liu
, X. N.
, Hu
, G. K.
, Huang
, G. L.
, and Sun
, C. T.
, 2011
, “An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,” Appl. Phys. Lett.
, 98
(25
), p. 251907
.10.
Yang
, M.
, Ma
, G.
, Yang
, Z.
, and Sheng
, P.
, 2013
, “Coupled Membranes With Doubly Negative Mass Density and Bulk Modulus
,” Phys. Rev. Lett.
, 110
(13
), p. 134301
.11.
Wu
, Y.
, Lai
, Y.
, and Zhang
, Z. Q.
, 2011
, “Elastic Metamaterials With Simultaneously Negative Effective Shear Modulus and Mass Density
,” Phys. Rev. Lett.
, 107
(10
), p. 105506
.12.
Lai
, Y.
, Wu
, Y.
, Sheng
, P.
, and Zhang
, Z. Q.
, 2011
, “Hybrid Elastic Solids
,” Nat. Mater.
, 10
(8
), pp. 620
–624
.13.
Milton
, G. W.
, and Willis
, J. R.
, 2007
, “On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,” Proc. R. Soc. London, Ser. A
, 463
(2079
), pp. 855
–880
.14.
Huang
, H. H.
, Sun
, C. T.
, and Huang
, G. L.
, 2009
, “On the Negative Effective Mass Density in Acoustic Metamaterials
,” Int. J. Eng. Sci.
, 47
(4
), pp. 610
–617
.15.
Huang
, H. H.
, and Sun
, C. T.
, 2011
, “Theoretical Investigation of the Behavior of an Acoustic Metamaterial With Extreme Young's Modulus
,” J. Mech. Phys. Solids
, 59
(10
), pp. 2070
–2081
.16.
Zhang
, S.
, Xia
, C.
, and Fang
, N.
, 2011
, “Broadband Acoustic Cloak for Ultrasound Waves
,” Phys. Rev. Lett.
, 106
(2
), p. 024301
.17.
Ambati
, M.
, Fang
, N.
, Sun
, C.
, and Zhang
, X.
, 2007
, “Surface Resonant States and Superlensing in Acoustic Metamaterials
,” Phys. Rev. B
, 75
(19
), p. 195447
.18.
Zhou
, X.
, and Hu
, G.
, 2011
, “Superlensing Effect of an Anisotropic Metamaterial Slab With Near-Zero Dynamic Mass
,” Appl. Phys. Lett.
, 98
(26
), p. 263510
.19.
Yao
, S.
, Zhou
, X.
, and Hu
, G.
, 2010
, “Investigation of the Negative-Mass Behaviors Occurring Below a Cut-Off Frequency
,” New J. Phys.
, 12
(10
), p. 103025
.20.
Huang
, G. L.
, and Sun
, C. T.
, 2010
, “Band Gaps in a Multiresonator Acoustic Metamaterial
,” ASME J. Vib. Acoust.
, 132
(3
), p. 031003
.21.
Baravelli
, E.
, and Ruzzene
, M.
, 2013
, “Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,” J. Sound Vib.
, 332
(25
), pp. 6562
–6579
.22.
Liu
, Y.
, Su
, X.
, and Sun
, C. T.
, 2015
, “Broadband Elastic Metamaterial With Single Negativity by Mimicking Lattice Systems
,” J. Mech. Phys. Solids
, 74
, pp. 158
–174
.23.
Marques
, R.
, Martel
, J.
, Mesa
, F.
, and Medina
, F.
, 2002
, “Left-Handed-Media Simulation and Transmission of EM Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides
,” Phys. Rev. Lett.
, 89
(18
), p. 183901
.24.
Eleftheriou
, M.
, Flach
, S.
, and Tsironis
, G. P.
, 2003
, “Breathers in One-Dimensional Nonlinear Thermalized Lattice With an Energy Gap
,” Physica D
, 186
(1
), pp. 20
–26
.25.
Hirsekorn
, M.
, Delsanto
, P. P.
, Leung
, A. C.
, and Matic
, P.
, 2006
, “Elastic Wave Propagation in Locally Resonant Sonic Material: Comparison Between Local Interaction Simulation Approach and Modal Analysis
,” J. Appl. Phys.
, 99
(12
), p. 124912
.26.
Miklowitz
, J.
, 1978
, The Theory of Elastic Waves and Waveguides
, North-Holland Publishing Company
, Amsterdam
.27.
Berenger
, J.
, 1994
, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves
,” J. Comput. Phys.
, 114
(2
), pp. 185
–200
.28.
Hastings
, F. D.
, Schneider
, J. B.
, and Broschat
, S. L.
, 1996
, “Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation
,” J. Acoust. Soc. Am.
, 100
(5
), pp. 3061
–3069
.Copyright © 2016 by ASME
You do not currently have access to this content.