Acoustic streaming generated from the traveling-wave component of a synthesized sound field often has considerable influence on ultrasonic manipulations, in which the behavior of microparticles may be disturbed. In this work, the large-scale streaming pattern in a chamber with three incident plane waves is simulated, illustrating a directional traveling stream pattern and several vortical structures. Based on the numerical results, the trapping capability of an acoustic potential well is quantitatively characterized according to several evaluation criteria: the boundary and elastic constant of the acoustic potential well, the acoustic radiation force offset ratio, and the elastic constant offset ratio. By optimizing these parameters, the constraint of the acoustic potential well can be strengthened to promote the performance and robustness of the ultrasonic transportation. An ultrasonic manipulation device employing three 1.67-MHz lead zirconate titanate (PZT) transducers with rectangular radiation surface is prototyped and performance tested. The experimental results show that the average fluctuations of a microparticle during transportation have been suppressed into a region less than 0.01 times the wavelength. Particle displacement from equilibrium is no longer observed.

References

1.
Park
,
J. K.
, and
Paul
,
I. R.
,
2013
, “
Noncontact Manipulation of Light Objects Based on Parameter Modulations of Acoustic Pressure Nodes
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031011
.
2.
Courtney
,
C. R. P.
,
Ong
,
C. K.
,
Drinkwater
,
B. W.
,
Bernassau
,
A. L.
,
Wilcox
,
P. D.
, and
Cumming
,
D. R. S.
,
2012
, “
Manipulation of Particles in Two Dimensions Using Phase Controllable Ultrasonic Standing Waves
,”
Proc. R. Soc. London A
,
468
(
2138
), pp.
337
360
.
3.
Atencia
,
J.
, and
Beebe
,
D. J.
,
2005
, “
Controlled Microfluidic Interfaces
,”
Nature
,
437
(
7049
), pp.
648
655
.
4.
Gor'kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys. Dokl.
,
6
, pp.
773
785
.
5.
Zarembo
,
L. K.
,
1971
,
High-Intensity Ultrasonic Fields
,
Plenum
,
New York
, pp.
137
199
.
6.
Spengler
,
J. F.
, and
Coakley
,
W. T.
,
2003
, “
Microstreaming Effects on Particle Concentration in an Ultrasonic Standing Wave
,”
Am. Inst. Chem. Eng. J.
,
49
(
11
), pp.
2773
2782
.
7.
Eckart
,
C.
,
1948
, “
Vortices and Streams Caused by Sound Waves
,”
Phys. Rev.
,
73
(
1
), pp.
68
76
.
8.
Riley
,
N.
,
2001
, “
Steady Streaming
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
43
65
.
9.
Rayleigh
,
L.
,
1884
, “
On the Circulation of Air Observed in Kundt's Tubes
,”
Philos. Trans. R. Soc. London
,
175
, pp.
10
11
.
10.
Nyborg
,
W. L.
,
1958
, “
Acoustic Streaming Near a Boundary
,”
J. Acoust. Soc. Am.
,
30
(
4
), pp.
329
338
.
11.
Schlichting
,
H.
,
1932
, “
Berechnung Ebener Periodischer Grenzschichtstriimungen
,”
Phys. Z
,
33
, pp.
327
335
.
12.
Sadhal
,
S.
,
2014
, “
Analysis of Acoustic Streaming by Perturbation Methods
,”
Microscale Acoustofluidics
,
T.
Laurell
, and
A.
Lenshof
, eds.,
Royal Society of Chemistry
,
London
, pp.
256
311
.
13.
Nyborg
,
W. L.
,
1998
, “
Acoustic Levitation and Streaming
,”
Nonlinear Acoustics
,
M. F.
Hamilton
, and
D. T.
Blackstock
, eds.,
Academic Press
, San Diego, CA, pp.
207
231
.
14.
Green
,
R.
,
Ohlin
,
M.
, and
Wiklund
,
M.
,
2014
, “
Applications of Acoustic Streaming
,”
Microscale Acoustofluidics
,
T.
Laurell
, and
A.
Lenshof
, eds.,
Royal Society of Chemistry
,
London
, pp.
312
336
.
15.
Kuznetsova
,
L. A.
, and
Coakley
,
W. T.
,
2004
, “
Microparticle Concentration in Short Path Length Ultrasonic Resonators: Roles of Radiation Pressure and Acoustic Streaming
,”
J. Acoust. Soc. Am.
,
116
(
4
), pp.
1956
1966
.
16.
Barnkob
,
R.
,
Augustsson
,
P.
,
Laurell
,
T.
, and
Bruus
,
H.
,
2012
, “
Acoustic Radiation- and Streaming-Induced Microparticle Velocities Determined by Microparticle Image Velocimetry in an Ultrasound Symmetry Plane
,”
Phys. Rev. E
,
86
(
5
), p.
056307
.
17.
Muller
,
P. B.
,
Barnkob
,
R.
,
Jensencand
,
M. J. H.
, and
Bruus
,
H.
,
2012
, “
A Numerical Study of Microparticle Acoustophoresis Driven by Acoustic Radiation Forces and Streaming-Induced Drag Forces
,”
Lab Chip
,
12
(
22
), pp.
4617
4627
.
18.
Aktas
,
M. K.
, and
Farouk
,
B.
,
2004
, “
Numerical Simulation of Acoustic Streaming Generated by Finite-Amplitude Resonant Oscillations in an Enclosure
,”
J. Acoust. Soc. Am.
,
116
(
5
), pp.
2822
2831
.
19.
Muller
,
P. B.
, and
Bruus
,
H.
,
2014
, “
Numerical Study of Thermoviscous Effects in Ultrasound-Induced Acoustic Streaming in Microchannels
,”
Phys. Rev. E
,
90
(
4
), p.
043016
.
20.
Lei
,
J.
,
Hill
,
M.
, and
Jones
,
P.
,
2014
, “
Numerical Simulation of 3D Boundary-Driven Acoustic Streaming in Microfluidic Devices
,”
Lab Chip
,
14
(
3
), pp.
532
541
.
21.
Ohlin
,
M.
,
Christakou
,
A. E.
,
Frisk
,
T.
,
Önfelt
,
B.
, and
Wiklund
,
M.
,
2013
, “
Influence of Acoustic Streaming on Ultrasonic Particle Manipulation in a 100-Well Ring Transducer Microplate
,”
J. Micromech. Microeng.
,
23
(
3
), pp.
35008
35018
.
22.
Spengler
,
J.
, and
Jekel
,
M.
,
2000
, “
Ultrasound Conditioning of Suspensions—Studies of Streaming Influence on Particle Aggregation on a Lab- and Pilot-Plant Scale
,”
Ultrasonics
,
38
(
1
), pp.
624
628
.
23.
Jia
,
K.
,
Yang
,
K. J.
, and
Mei
,
D. Q.
,
2012
, “
Quantitative Trap and Long Range Transportation of Micro-Particles by Using Phase Controllable Acoustic Wave
,”
J. Appl. Phys.
,
112
(
5
), p.
054908
.
24.
Manneberg
,
O.
,
Vanherberghen
,
B.
,
Önfelt
,
B.
, and
Wiklund
,
M.
,
2009
, “
Flow-Free Transport of Cells in Microchannels by Frequency-Modulated Ultrasound
,”
Lab Chip
,
9
(
6
), pp.
833
837
.
25.
Nyborg
,
W. L.
,
1953
, “
Acoustic Streaming Due to Attenuated Plane Waves
,”
J. Acoust. Soc. Am.
,
25
(
1
), pp.
68
75
.
26.
Hammarström
,
B.
,
Evander
,
M.
,
Barbeau
,
H.
,
Bruzelius
,
M.
,
Larsson
,
J.
,
Laurell
,
T.
, and
Nilssona
,
J.
,
2010
, “
Non-Contact Acoustic Cell Trapping in Disposable Glass Capillaries
,”
Lab Chip
,
10
(
17
), pp.
2251
2257
.
27.
Hong
,
Z. Y.
,
Xie
,
W. J.
, and
Wei
,
B.
,
2011
, “
Acoustic Levitation With Self-Adaptive Flexible Reflectors
,”
Rev. Sci. Instrum.
,
82
(
7
), p.
074904
.
You do not currently have access to this content.