Nonuniform rational B-splines (NURBS) finite element has advantages in analyzing the structure with curved surface geometry. In this research, we develop a component mode synthesis (CMS) based order-reduction technique which can be applied to large-scale NURBS finite element dynamic analysis. In particular, we establish a new substructure division scheme. The underlying idea is to optimally construct interface between adjacent substructures that can maximize the geometry consistency between the original structure and the divided substructures and at the meantime facilitate the compatibility conditions needed in mode synthesis. Case studies are carried out to validate the performance of the order-reduction formulation.
Issue Section:
Research Papers
References
1.
Wall
, W. A.
, Frenzel
, M. A.
, and Cyron
, C.
, 2008
, “Isogeometric Structural Shape Optimization
,” Comput. Methods Appl. Mech. Eng.
, 197
, pp. 2976
–2988
.2.
Peters
, J.
, and Reif
, U.
, 2008
, Subdivision Surfaces
, Springer-Verlag
, Berlin
.3.
Bazilevs
, Y.
, Calo
, V. M.
, Cottrell
, J. A.
, Evans
, J. A.
, Hughes
, T. J. R.
, Lipton
, S.
, Scott
, M. A.
, and Sederberg
, T. W.
, 2010
, “Isogeometric Analysis Using T-Splines
,” Comput. Methods Appl. Mech. Eng.
, 199
, pp. 229
–263
.4.
Ha
, S. H.
, Choi
, K. K.
, and Cho
, S.
, 2010
, “Numerical Method for Shape Optimization Using T-Spline Based Isogeometric Method
,” Struct. Multidiscip. Optim.
, 42
(3
), pp. 417
–428
.5.
Hughes
, T. J. R.
, Cottrell
, J. A.
, and Bazilevs
, Y.
, 2005
, “Isogeometry Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,” Comput. Methods Appl. Mech. Eng.
, 194
, pp. 4135
–4195
.6.
Cottrell
, J. A.
, Reali
, A.
, Bazievs
, Y.
, and Hughes
, T. J. R.
, 2006
, “Isogeometry Analysis of Structural Vibrations
,” Comput. Methods Appl. Mech. Eng.
, 195
(41–43), pp. 5257
–5296
.7.
Cottrell
, J. A.
, Hughes
, T. J. R.
, and Bazilevs
, Y.
, 2009
, Isogeometry Analysis-Toward Integration of CAD and FEA
, Wiley
, New York
.8.
Qian
, X.
, 2010
, “Full Analytical Sensitivities in NURBS Based Isogeometry Shape Optimization
,” Comput. Methods Appl. Mech. Eng.
, 199
, pp. 2059
–2071
.9.
Hughes
, T. J. R.
, Reali
, A.
, and Sangalli
, G.
, 2008
, “Duality and Unified Analysis of Discrete Approximation in Structural Dynamics and Wave Propagation: Comparison of p-Method Finite Elements With k-Method NURBS
,” Comput. Methods Appl. Mech. Eng.
, 197
, pp. 4104
–4124
.10.
Shojaee
, S.
, Izadpanah
, E.
, Valizadeh
, N.
, and Kiendl
, J.
, 2012
, “Free Vibration Analysis of Thin Plates by Using a NURBS-Based Isogeometric Approach
,” Finite Elem. Anal. Des.
, 61
, pp. 23
–34
.11.
Zhou
, K.
, and Tang
, J.
, 2015
, “Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation
,” ASME J. Vib. Acoust.
, 137
(6
), p. 061008
.12.
Willberg
, C.
, Duczek
, S.
, Vivar Perez
, J. M.
, Schmicker
, D.
, and Gabbert
, U.
, 2012
, “Comparison of Different Higher Order Finite Element Schemes for the Simulation of Lamb Waves
,” Comput. Methods Appl. Mech. Eng.
, 241–244
, pp. 246
–261
.13.
Duczek
, S.
, Willberg
, C.
, Schmicker
, D.
, and Gabbert
, U.
, 2012
, “Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently
,” Key Eng. Mater.
, 518
, pp. 95
–105
.14.
Casciati
, S.
, and Farevelli
, L.
, 2014
, “Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System
,” Smart Struct. Syst.
, 13
(1
), pp. 99
–109
.15.
Rixen
, D. J.
, 2004
, “A Dual Craig-Bampton Method for Dynamic Substructuring
,” J. Comput. Appl. Math.
, 168
, pp. 383
–391
.16.
Bennighof
, J. K.
, and Lehoucq
, R. B.
, 2004
, “An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics
,” SIAM J. Sci. Comput.
, 25
(6
), pp. 2084
–2106
.17.
Masson
, G.
, Ait Brik
, B.
, Cogan
, S.
, and Bouhaddi
, N.
, 2006
, “Component Mode Synthesis (CMS) Based on an Enrich Ritz Approach for Efficient Structural Optimization
,” J. Sound Vib.
, 296
, pp. 845
–860
.18.
Craig
, R. R.
, and Kurdila
, A. J.
, 2006
, Fundamentals of Structural Dynamics
, 2nd ed., Wiley
, New York
.19.
Tran
, D.-M.
, 2009
, “Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,” Comput. Struct.
, 87
, pp. 1141
–1153
.20.
de Klerk
, D.
, Rixen
, D. J.
, and Voormeeren
, S. N.
, 2008
, “General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques
,” AIAA J.
, 46
(5
), pp. 1169
–1181
.21.
Hinke
, L.
, Dohnal
, F.
, Mace
, B. R.
, Waters
, T. P.
, and Ferguson
, N. S.
, 2009
, “Component Mode Synthesis as a Framework for Uncertainty Analysis
,” J. Sound Vib.
, 324
, pp. 161
–178
.22.
Liu
, Y.
, Sun
, H.
, and Wang
, D.
, 2013
, “Updating the Finite Element Model of Large-Scaled Structures Using Component Mode Synthesis Technique
,” Intell. Autom. Soft Comput.
, 19
(1
), pp. 11
–21
.23.
Papadimitriou
, C.
, and Papadioti
, D. C.
, 2013
, “Component Mode Synthesis Techniques for Finite Element Model Updating
,” Comput. Struct.
, 126
, pp. 15
–28
.24.
Tournour
, M. A.
, Atalla
, N.
, Chiello
, O.
, and Sgard
, F.
, 2001
, “Validation, Performance, Convergence and Application of Free Interface Component Mode Synthesis
,” Comput. Struct.
, 79
, pp. 1861
–1876
.25.
Morgan
, J. A.
, Pierre
, C.
, and Hulbert
, G. M.
, 1997
, “Forced Response of Coupled Substructures Using Experimentally Based Component Mode Synthesis
,” AIAA J.
, 35
(2
), pp. 334
–339
.26.
Qian
, X.
, and Sigmund
, O.
, 2011
, “Isogeometric Shape Optimization of Photonic Crystals Via Coons Patches
,” Comput. Methods Appl. Mech. Eng.
, 200
, pp. 2237
–2255
.27.
Allemang
, R. J.
, 2003
, “The Modal Assurance Criterion—Twenty Years of Use and Abuse
,” Sound Vib.
, 37
, pp. 14
–21
.28.
Banerjee
, S.
, Ricci
, F.
, Monaco
, E.
, and Mai
, A.
, 2009
, “A Wave Propagation and Vibration-Based Approach for Damage Identification in Structural Components
,” J. Sound Vib.
, 322
, pp. 167
–183
.29.
Brehm
, M.
, Zabei
, V.
, and Bucher
, C.
, 2010
, “An Automatic Mode Paring Strategy Using an Enhanced Modal Assurance Criterion Based on Modal Strain Energies
,” J. Sound Vib.
, 329
(25
), pp. 5375
–5392
.Copyright © 2016 by ASME
You do not currently have access to this content.