Nonuniform rational B-splines (NURBS) finite element has advantages in analyzing the structure with curved surface geometry. In this research, we develop a component mode synthesis (CMS) based order-reduction technique which can be applied to large-scale NURBS finite element dynamic analysis. In particular, we establish a new substructure division scheme. The underlying idea is to optimally construct interface between adjacent substructures that can maximize the geometry consistency between the original structure and the divided substructures and at the meantime facilitate the compatibility conditions needed in mode synthesis. Case studies are carried out to validate the performance of the order-reduction formulation.

References

1.
Wall
,
W. A.
,
Frenzel
,
M. A.
, and
Cyron
,
C.
,
2008
, “
Isogeometric Structural Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
2976
2988
.
2.
Peters
,
J.
, and
Reif
,
U.
,
2008
,
Subdivision Surfaces
,
Springer-Verlag
,
Berlin
.
3.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Evans
,
J. A.
,
Hughes
,
T. J. R.
,
Lipton
,
S.
,
Scott
,
M. A.
, and
Sederberg
,
T. W.
,
2010
, “
Isogeometric Analysis Using T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
229
263
.
4.
Ha
,
S. H.
,
Choi
,
K. K.
, and
Cho
,
S.
,
2010
, “
Numerical Method for Shape Optimization Using T-Spline Based Isogeometric Method
,”
Struct. Multidiscip. Optim.
,
42
(
3
), pp.
417
428
.
5.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometry Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4135
4195
.
6.
Cottrell
,
J. A.
,
Reali
,
A.
,
Bazievs
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometry Analysis of Structural Vibrations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(41–43), pp.
5257
5296
.
7.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometry Analysis-Toward Integration of CAD and FEA
,
Wiley
,
New York
.
8.
Qian
,
X.
,
2010
, “
Full Analytical Sensitivities in NURBS Based Isogeometry Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
2059
2071
.
9.
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2008
, “
Duality and Unified Analysis of Discrete Approximation in Structural Dynamics and Wave Propagation: Comparison of p-Method Finite Elements With k-Method NURBS
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
4104
4124
.
10.
Shojaee
,
S.
,
Izadpanah
,
E.
,
Valizadeh
,
N.
, and
Kiendl
,
J.
,
2012
, “
Free Vibration Analysis of Thin Plates by Using a NURBS-Based Isogeometric Approach
,”
Finite Elem. Anal. Des.
,
61
, pp.
23
34
.
11.
Zhou
,
K.
, and
Tang
,
J.
,
2015
, “
Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061008
.
12.
Willberg
,
C.
,
Duczek
,
S.
,
Vivar Perez
,
J. M.
,
Schmicker
,
D.
, and
Gabbert
,
U.
,
2012
, “
Comparison of Different Higher Order Finite Element Schemes for the Simulation of Lamb Waves
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
246
261
.
13.
Duczek
,
S.
,
Willberg
,
C.
,
Schmicker
,
D.
, and
Gabbert
,
U.
,
2012
, “
Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently
,”
Key Eng. Mater.
,
518
, pp.
95
105
.
14.
Casciati
,
S.
, and
Farevelli
,
L.
,
2014
, “
Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System
,”
Smart Struct. Syst.
,
13
(
1
), pp.
99
109
.
15.
Rixen
,
D. J.
,
2004
, “
A Dual Craig-Bampton Method for Dynamic Substructuring
,”
J. Comput. Appl. Math.
,
168
, pp.
383
391
.
16.
Bennighof
,
J. K.
, and
Lehoucq
,
R. B.
,
2004
, “
An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics
,”
SIAM J. Sci. Comput.
,
25
(
6
), pp.
2084
2106
.
17.
Masson
,
G.
,
Ait Brik
,
B.
,
Cogan
,
S.
, and
Bouhaddi
,
N.
,
2006
, “
Component Mode Synthesis (CMS) Based on an Enrich Ritz Approach for Efficient Structural Optimization
,”
J. Sound Vib.
,
296
, pp.
845
860
.
18.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
, 2nd ed.,
Wiley
,
New York
.
19.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
, pp.
1141
1153
.
20.
de Klerk
,
D.
,
Rixen
,
D. J.
, and
Voormeeren
,
S. N.
,
2008
, “
General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques
,”
AIAA J.
,
46
(
5
), pp.
1169
1181
.
21.
Hinke
,
L.
,
Dohnal
,
F.
,
Mace
,
B. R.
,
Waters
,
T. P.
, and
Ferguson
,
N. S.
,
2009
, “
Component Mode Synthesis as a Framework for Uncertainty Analysis
,”
J. Sound Vib.
,
324
, pp.
161
178
.
22.
Liu
,
Y.
,
Sun
,
H.
, and
Wang
,
D.
,
2013
, “
Updating the Finite Element Model of Large-Scaled Structures Using Component Mode Synthesis Technique
,”
Intell. Autom. Soft Comput.
,
19
(
1
), pp.
11
21
.
23.
Papadimitriou
,
C.
, and
Papadioti
,
D. C.
,
2013
, “
Component Mode Synthesis Techniques for Finite Element Model Updating
,”
Comput. Struct.
,
126
, pp.
15
28
.
24.
Tournour
,
M. A.
,
Atalla
,
N.
,
Chiello
,
O.
, and
Sgard
,
F.
,
2001
, “
Validation, Performance, Convergence and Application of Free Interface Component Mode Synthesis
,”
Comput. Struct.
,
79
, pp.
1861
1876
.
25.
Morgan
,
J. A.
,
Pierre
,
C.
, and
Hulbert
,
G. M.
,
1997
, “
Forced Response of Coupled Substructures Using Experimentally Based Component Mode Synthesis
,”
AIAA J.
,
35
(
2
), pp.
334
339
.
26.
Qian
,
X.
, and
Sigmund
,
O.
,
2011
, “
Isogeometric Shape Optimization of Photonic Crystals Via Coons Patches
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
2237
2255
.
27.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion—Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
, pp.
14
21
.
28.
Banerjee
,
S.
,
Ricci
,
F.
,
Monaco
,
E.
, and
Mai
,
A.
,
2009
, “
A Wave Propagation and Vibration-Based Approach for Damage Identification in Structural Components
,”
J. Sound Vib.
,
322
, pp.
167
183
.
29.
Brehm
,
M.
,
Zabei
,
V.
, and
Bucher
,
C.
,
2010
, “
An Automatic Mode Paring Strategy Using an Enhanced Modal Assurance Criterion Based on Modal Strain Energies
,”
J. Sound Vib.
,
329
(
25
), pp.
5375
5392
.
You do not currently have access to this content.