In this investigation, the pantograph/catenary contact is examined using two different formulations. The first is an elastic contact formulation that allows for the catenary/panhead separation and for the analysis of the effect of the aerodynamic forces, while the second approach is based on a constraint formulation that does not allow for such a separation by eliminating the freedom of relative translation in two directions at the catenary/panhead contact point. In this study, the catenary system, including the contact and messenger wires, is modeled using the nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF) and flexible multibody system (MBS) algorithms. The generalized aerodynamic forces associated with the ANCF position and gradient coordinates and the pantograph reference coordinates are formulated. The new elastic contact formulation used in this investigation is derived from the constraint-based sliding joint formulation previously proposed by the authors. By using a unilateral penalty force approach, separation of the catenary and panhead is permitted, thereby allowing for better evaluating the response of the pantograph/catenary system to wind loading. In this elastic contact approach, the panhead is assumed to have six degrees-of-freedom with respect to the catenary. The coordinate system at the pantograph/catenary contact point is chosen such that the contact model developed in this study can be used with both the fully parameterized and gradient deficient ANCF elements. In order to develop a more realistic model, the MBS pantograph model is mounted on a detailed three-dimensional MBS rail-vehicle model. The wheel/rail contact is modeled using a nonlinear three-dimensional elastic contact formulation that accounts for the creep forces and spin moment. In order to examine the effect of the external aerodynamic forces on the pantograph/catenary interaction, two scenarios are considered in this investigation. In the first scenario, the crosswind loading is applied on the pantograph components only, while in the second scenario, the aerodynamic forces are applied on the pantograph components and also on the flexible catenary. For the configuration considered in this investigation, it was found that the crosswind assists the uplift force exerted on the pantograph mechanism, increasing the mean contact force value. Numerical results are presented in order to compare between the cases with and without the wind forces.

References

1.
Bruni
,
S.
,
Bucca
,
G.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2012
, “
Numerical and Hardware-in-the-Loop Tools for the Design of Very High Speed Pantograph-Catenary Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p. 041013.
2.
Facchinetti
,
A.
, and
Bruni
,
S.
,
2012
, “
Hardware-in-the-Loop Hybrid Simulation of Pantograph–Catenary Interaction
,”
J. Sound Vib.
,
331
(
12
), pp.
2783
2797
.
3.
Facchinetti
,
A.
,
Gasparetto
,
L.
, and
Bruni
,
S.
,
2013
, “
Real-Time Catenary Models for the Hardware-in-the-Loop Simulation of the Pantograph–Catenary Interaction
,”
Veh. Syst. Dyn.
,
51
(
4
), pp.
499
516
.
4.
Bucca
,
G.
, and
Collina
,
A.
,
2009
, “
A Procedure for the Wear Prediction of Collector Strip and Contact Wire in Pantograph–Catenary System
,”
Wear
,
266
(
1
), pp.
46
59
.
5.
Bocciolone
,
M.
,
Resta
,
F.
,
Rocchi
,
D.
,
Tosi
,
A.
, and
Collina
,
A.
,
2006
, “
Pantograph Aerodynamic Effects on the Pantograph–Catenary Interaction
,”
Veh. Syst. Dyn.
,
44
(
1
), pp.
560
570
.
6.
Carnevale
,
M.
,
Facchinetti
,
A.
,
Maggiori
,
L.
, and
Rocchi
,
D.
,
2015
, “
Computational Fluid Dynamics as a Means of Assessing the Influence of Aerodynamic Forces on the Mean Contact Force Acting on a Pantograph
,”
Proc. Inst. Mech. Eng., Part F
,
230
(
7
), pp.
1698
1713
.
7.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Rauter
,
F.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2009
, “
Influence of the Aerodynamic Forces on the Pantograph–Catenary System for High-Speed Trains
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1327
1347
.
8.
Stickland
,
M. T.
, and
Scanlon
,
T. J.
,
2001
, “
An Investigation Into the Aerodynamic Characteristics of Catenary Contact Wires in a Cross-Wind
,”
Proc. Inst. Mech. Eng., Part F
,
215
(
4
), pp.
311
318
.
9.
Stickland
,
M. T.
,
Scanlon
,
T. J.
,
Craighead
,
I. A.
, and
Fernandez
,
J.
,
2003
, “
An Investigation Into the Mechanical Damping Characteristics of Catenary Contact Wires and Their Effect on Aerodynamic Galloping Instability
,”
Proc. Inst. Mech. Eng., Part F
,
217
(
2
), pp.
63
71
.
10.
Bocciolone
,
M.
,
Cheli
,
F.
,
Corradi
,
R.
,
Muggiasca
,
S.
, and
Tomasini
,
G.
,
2008
, “
Crosswind Action on Rail Vehicles: Wind Tunnel Experimental Analyses
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
584
610
.
11.
Cheli
,
F.
,
Ripamonti
,
F.
,
Rocchi
,
D.
, and
Tomasini
,
G.
,
2010
, “
Aerodynamic Behaviour Investigation of the New EMUV250 Train to Cross Wind
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
4
), pp.
189
201
.
12.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer
,
Berlin
.
13.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
.
14.
Wittenburg
,
J.
,
1977
,
Dynamics of Systems of Rigid Bodies
,
Teubner
,
Stuttgart, Germany
.
15.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
16.
Pappalardo
,
C. M.
,
Yu
,
Z.
,
Zhang
,
X.
, and
Shabana
,
A. A.
,
2016
, “
Rational ANCF Thin Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051009
.
17.
Shabana
,
A. A.
,
1998
, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
,
16
(
3
), pp.
293
306
.
18.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.
19.
Pappalardo
,
C. M.
,
Patel
,
M. D.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2015
, “
Contact Force Control in Multibody Pantograph/Catenary Systems
,”
Proc. Inst. Mech. Eng., Part K
, (in press).
20.
Seo
,
J. H.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems
,”
Nonlinear Dyn.
,
42
(
2
), pp.
199
215
.
21.
Seo
,
J. H.
,
Kim
,
S. W.
,
Jung
,
I. H.
,
Park
,
T. W.
,
Mok
,
J. Y.
,
Kim
,
Y. G.
, and
Chai
,
J. B.
,
2006
, “
Dynamic Analysis of a Pantograph–Catenary System Using Absolute Nodal Coordinates
,”
Veh. Syst. Dyn.
,
44
(
8
), pp.
615
630
.
22.
Arnold
,
M.
, and
Simeon
,
B.
,
2000
, “
Pantograph and Catenary Dynamics: A Benchmark Problem and Its Numerical Solution
,”
Appl. Numer. Math.
,
34
(
4
), pp.
345
362
.
23.
Poetsch
,
G.
,
Evans
,
J.
,
Meisinger
,
R.
,
Kortüm
,
W.
,
Baldauf
,
W.
,
Veitl
,
A.
, and
Wallaschek
,
J.
,
1997
, “
Pantograph/Catenary Dynamics and Control
,”
Veh. Syst. Dyn.
,
28
(
2–3
), pp.
159
195
.
24.
Collina
,
A.
, and
Bruni
,
S.
,
2002
, “
Numerical Simulation of Pantograph-Overhead Equipment Interaction
,”
Veh. Syst. Dyn.
,
38
(
4
), pp.
261
291
.
25.
Massat
,
J. P.
,
Laine
,
J. P.
, and
Bobillot
,
A.
,
2006
, “
Pantograph–Catenary Dynamics Simulation
,”
Veh. Syst. Dyn.
,
44
(
1
), pp.
551
559
.
26.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2012
, “
Influence of Pantograph Suspension Characteristics on the Contact Quality With the Catenary for High Speed Trains
,”
Comput. Struct.
,
110–111
, pp.
32
42
.
27.
Ambrósio
,
J.
,
Pombo
,
J.
,
Rauter
,
F.
, and
Pereira
,
M.
,
2009
, “
A Memory Based Communication in the Co-Simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation
,”
Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
, pp.
231
252
.
28.
Ambrósio
,
J.
,
Pombo
,
J.
,
Pereira
,
M.
,
Antunes
,
P.
, and
Mósca
,
A.
,
2012
, “
A Computational Procedure for the Dynamic Analysis of the Catenary-Pantograph Interaction in High-Speed Trains
,”
J. Theor. Appl. Mech.
,
50
(
3
), pp.
681
699
.
29.
Park
,
T. J.
,
Han
,
C. S.
, and
Jang
,
J. H.
,
2003
, “
Dynamic Sensitivity Analysis for the Pantograph of a High-Speed Rail Vehicle
,”
J. Sound Vib.
,
266
(
2
), pp.
235
260
.
30.
Qian
,
W. J.
,
Chen
,
G. X.
,
Zhang
,
W. H.
,
Ouyang
,
H.
, and
Zhou
,
Z. R.
,
2013
, “
Friction-Induced, Self-Excited Vibration of a Pantograph-Catenary System
,”
ASME J. Vib. Acoust.
,
135
(
5
), pp.
1
9
.
31.
Lee
,
J. H.
, and
Park
,
T. W.
,
2012
, “
Development of a Three-Dimensional Catenary Model Using the Cable Elements Based on Absolute Nodal Coordinate Formulation
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3933
3941
.
32.
Bruni
,
S.
,
Ambrosio
,
J.
,
Carnicero
,
A.
,
Cho
,
Y. H.
,
Finner
,
L.
,
Ikeda
,
M.
, and
Zhang
,
W.
,
2015
, “
The Results of the Pantograph–Catenary Interaction Benchmark
,”
Veh. Syst. Dyn.
,
53
(
3
), pp.
412
435
.
33.
Shabana
,
A. A.
,
2011
,
Computational Continuum Mechanics
, 2nd ed.,
Cambridge University Press
,
New York
.
34.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multi-Body Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.
35.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
(
2
), pp.
193
207
.
36.
Gere
,
J. M.
, and
Weaver
,
W.
,
1965
,
Analysis of Framed Structures
,
Van Nostrand
,
New York
.
37.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
38.
Ikeda
,
M.
, and
Mitsumoji
,
T.
,
2009
, “
Numerical Estimation of Aerodynamic Interference Between Panhead and Articulated Frame
,”
Q. Rep. RTRI
,
50
(
4
), pp.
227
232
.
You do not currently have access to this content.