Inspired by the mechanism of acoustic–elastic metamaterial (AEMM) that exhibits a stop band gap for wave transmission, simultaneous vibration suppression and energy harvesting can be achieved by integrating AEMM with energy-harvesting component. This article presents an analytical study of a multifunctional system based on this concept. First, a mathematical model of a unit-cell AEMM embedded with a piezoelectric transducer is developed and analyzed. The most important finding is the double-valley phenomenon that can intensively widen the band gap under strong electromechanical coupling condition. Based on the mathematical model, a dimensionless parametric study is conducted to investigate how to tune the system to enhance its vibration suppression ability. Subsequently, a multicell system is conceptualized from the findings of the unit-cell system. In a similar way, dimensionless parametric studies are conducted to optimize the vibration suppression performance and the energy-harvesting performance severally. It turns out that different impedance matching schemes are required to achieve optimal vibration suppression and energy harvesting. To handle this problem, compromising solutions are proposed for weakly and strongly coupled systems, respectively. Finally, the characteristics of the AEMM-based piezoelectric energy harvester (PEH) from two functional aspects are summarized, providing several design guidelines in terms of system parameter tuning. It is concluded that certain tradeoff is required in the process of optimizing the performance toward dual functionalities.

References

1.
Shalaev
,
V. M.
,
Cai
,
W.
,
Chettiar
,
U. K.
,
Yuan
,
H.-K.
,
Sarychev
,
A. K.
,
Drachev
,
V. P.
, and
Kildishev
,
A. V.
,
2005
, “
Negative Index of Refraction in Optical Metamaterials
,”
Opt. Lett.
,
30
(
24
), pp.
3356
3358
.
2.
Yao
,
J.
,
Liu
,
Z.
,
Liu
,
Y.
,
Wang
,
Y.
,
Sun
,
C.
,
Bartal
,
G.
,
Stacy
,
A. M.
, and
Zhang
,
X.
,
2008
, “
Optical Negative Refraction in Bulk Metamaterials of Nanowires
,”
Science
,
321
(
5891
), pp.
930
930
.
3.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Anomalous Wave Propagation in a One-Dimensional Acoustic Metamaterial Having Simultaneously Negative Mass Density and Young's Modulus
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2887
2895
.
4.
Liu
,
X. N.
,
Hu
,
G. K.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2011
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
5.
Yao
,
S. S.
,
Zhou
,
X. M.
, and
Hu
,
G. K.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass-Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
.
6.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
7.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
8.
Ho
,
K. M.
,
Yang
,
Z.
,
Zhang
,
X.
, and
Sheng
,
P.
,
2005
, “
Measurements of Sound Transmission Through Panels of Locally Resonant Materials Between Impedance Tubes
,”
Appl. Acoust.
,
66
(
7
), pp.
751
765
.
9.
Oudich
,
M.
,
Assouar
,
M. B.
, and
Hou
,
Z. L.
,
2010
, “
Propagation of Acoustic Waves and Waveguiding in a Two-Dimensional Locally Resonant Phononic Crystal Plate
,”
Appl. Phys. Lett.
,
97
(
19
), p.
193503
.
10.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
11.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Optimizing the Band Gap of Effective Mass Negativity in Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
101
(
24
), p.
241902
.
12.
Liu
,
Y.
,
Sun
,
X. Z.
,
Jiang
,
W. Z.
, and
Gu
,
Y.
,
2014
, “
Tuning of Bandgap Structures in Three-Dimensional Kagome-Sphere Lattice
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021016
.
13.
Chen
,
Y.
,
Huang
,
G.
, and
Sun
,
C.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
.
14.
Chen
,
Z. S.
,
Guo
,
B.
,
Yang
,
Y. M.
, and
Cheng
,
C. C.
,
2014
, “
Metamaterials-Based Enhanced Energy Harvesting: A Review
,”
Phys. B Condens. Matter
,
438
, pp.
1
8
.
15.
Carrara
,
M.
,
Cacan
,
M. R.
,
Toussaint
,
J.
,
Leamy
,
M. J.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2013
, “
Metamaterial-Inspired Structures and Concepts for Elastoacoustic Wave Energy Harvesting
,”
Smart Mater. Struct.
,
22
(
6
), p.
065004
.
16.
Shen
,
L.
,
Wu
,
J. H.
,
Zhang
,
S. W.
,
Liu
,
Z. Y.
, and
Li
,
J.
,
2015
, “
Low-Frequency Vibration Energy Harvesting Using a Locally Resonant Phononic Crystal Plate With Spiral Beams
,”
Modern Phys. Lett. B
,
29
(
1
), p. 1450259.
17.
Mikoshiba
,
K.
,
Manimala
,
J. M.
, and
Sun
,
C. T.
,
2013
, “
Energy Harvesting Using an Array of Multifunctional Resonators
,”
J. Intell. Mater. Syst. Struct.
,
24
(
2
), pp.
168
179
.
18.
Ahmed
,
R. U.
,
Adiba
,
A.
, and
Banerjee
,
S.
,
2015
, “
Energy Scavenging From Acousto-Elastic Metamaterial Using Local Resonance Phenomenon
,”
Proc. SPIE
,
9431
, p.
943106
.
19.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Locally Resonant Acoustic Metamaterials With 2D Anisotropic Effective Mass Density
,”
Philos. Mag.
,
91
(
6
), pp.
981
996
.
20.
Khelif
,
A.
, and
Adibi
,
A.
,
2015
,
Phononic Crystals: Fundamentals and Applications
,
Springer
, New York.
21.
Tang
,
L. H.
, and
Yang
,
Y. W.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
.
22.
Kim
,
H.
,
Priya
,
S.
,
Stephanou
,
H.
, and
Uchino
,
K.
,
2007
, “
Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
9
), pp.
1851
1859
.
23.
Moheimani
,
S. R.
, and
Fleming
,
A. J.
,
2006
,
Piezoelectric Transducers for Vibration Control and Damping
,
Springer Science & Business Media
, New York.
24.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2005
, “
Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
865
876
.
25.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
4
), pp.
584
595
.
You do not currently have access to this content.