Many mechanical systems often show nonlinear behavior related to particular operating conditions or to the nonlinear characteristic of the elements (springs, dampers, etc.) making up the system. In these cases, common engineering practice is to linearize the equation of motion around a particular operating point and to design a linear controller. Although this approach is simple, its main disadvantage is that stability properties and validity of the controller are only local. For these reasons, over the last decades, nonlinear control techniques have been investigated more and more in order to improve control performance. In particular, in this paper, sliding mode control (SMC) technique, which is based on the model of the system (model-based), is considered because of its easy implementation, especially on simple mechanical systems, and the considerable robustness of the controller even under significant model uncertainties. This technique is analyzed numerically with respect to the pendulum system to better understand the influence of the control action on the system dynamics. A nonlinear sliding surface is also considered, recalling the terminal sliding mode (TSM) control already analyzed in the scientific literature. This sliding surface is characterized for the numerical system, and then it is applied experimentally in order to control a highly nonlinear system, consisting of a three-link flexible manipulator. For this system, a nonlinear modal model is developed, and a nonlinear observer is designed. Finally, results of experimental tests on the manipulator are reported, in order to compare the performances of the linear embedded control and the sliding mode controllers with the linear and nonlinear sliding surface.

References

1.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
.
2.
Paijmans
,
B.
,
Symens
,
W.
,
Van Brussel
,
H.
, and
Swevers
,
J.
,
2006
, “
A Gain-Scheduling Control Technique for Mechatronic Systems With Position-Dependent Dynamics
,”
American Control Conference
(
ACC
), Minneapolis, MN, June 14–16, pp. 93–106.
3.
Hassan
,
K. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
505
544
.
4.
Siciliano
,
B.
, and
Book
,
W. J.
,
1988
, “
A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators
,”
Int. J. Rob. Res.
,
7
(
4
), pp.
79
90
.
5.
Aoustin
,
Y.
, and
Chevallereau
,
C.
,
1993
, “
The Singular Perturbation Control of a Two-Flexible-Link Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Atlanta, GA, May 2–6, pp.
737
742
.
6.
Passino
,
K. M.
, and
Yurkovich
,
S.
,
1998
,
Fuzzy Control
, Vol. 2725,
Addison Wesley Longman
,
Petaluma, CA
.
7.
Moudgal
,
V. G.
,
Kwong
,
W. A.
,
Passino
,
K. M.
, and
Yurkovich
,
S.
,
1995
, “
Fuzzy Learning Control for a Flexible-Link Robot
,”
IEEE Trans. Fuzzy Syst.
,
3
(
2
), pp.
199
210
.
8.
Rigatos
,
G. R.
,
2009
, “
Model-Based and Model-Free Control of Flexible-Link Robots: A Comparison Between Representative Methods
,”
Appl. Math. Model.
,
33
(
10
), pp.
3906
3925
.
9.
Ge
,
S. S.
,
Le
,
T. H.
, and
Zhu
,
G.
,
1996
, “
Energy-Based Robust Controller Design for Multi-Link Flexible Robots
,”
Mechatronics
,
6
(
7
), pp.
779
798
.
10.
Utkin
,
V. I.
,
1977
, “
Variable Structure System With Sliding Modes
,”
Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
11.
He
,
W.
,
Ge
,
S. S.
,
How
,
B. V. E.
,
Choo
,
Y. S.
, and
Hong
,
K.-S.
,
2011
, “
Robust Adaptive Boundary Control of a Flexible Marine Riser With Vessel Dynamics
,”
Automatica
,
47
(
4
), pp.
722
732
.
12.
He
,
W.
, and
Ge
,
S. S.
,
2015
, “
Vibration Control of a Flexible Beam With Output Constraint
,”
IEEE Trans. Ind. Electron.
,
62
(
8
), pp.
5023
5030
.
13.
Veluvolu
,
K. C.
,
Kim
,
M. Y.
, and
Lee
,
D.
,
2011
, “
Nonlinear Sliding Mode High-Gain Observers for Fault Estimation
,”
Int. J. Syst. Sci.
,
42
(
7
), pp.
1065
1074
.
14.
Fulwani
,
D.
,
Bandyopadhyay
,
B.
, and
Fridman
,
L.
,
2012
, “
Non-Linear Sliding Surface: Towards High Performance Robust Control
,”
IET Control Theory Appl.
,
6
(
2
), pp.
235
242
.
15.
Alwi
,
H.
, and
Edwards
,
C.
,
2014
, “
Fault Tolerant Longitudinal Aircraft Control Using Non-Linear Integral Sliding Mode
,”
IET Control Theory Appl.
,
8
(
17
), pp.
1803
1814
.
16.
Venkataraman
,
S. T.
, and
Gulati
,
S.
,
1992
, “
Control of Nonlinear Systems Using Terminal Sliding Modes
,”
American Control Conference
(
ACC
), Chicago, IL, June 24–26, pp.
891
893
.
17.
Yu
,
X.
, and
Man
,
Z.
,
1998
, “
Multi-Input Uncertain Linear Systems With Terminal Sliding Mode Control
,”
Automatica
,
34
(
3
), pp.
389
392
.
18.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Man
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
19.
Man
,
Z.
,
Paplinsky
,
A. P.
, and
Wu
,
H. R.
,
1994
, “
A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2464
2469
.
20.
Yu
,
T.
,
1998
, “
Terminal Sliding Mode Control for Rigid Robots
,”
Automatica
,
34
(
1
), pp.
51
56
.
21.
Ripamonti
,
F.
,
Orsini
,
L.
, and
Resta
,
F.
,
2015
, “
Non-Linear Control Logics for Vibrations Suppression: A Comparison Between Model-Based and Non-Model-Based Techniques
,”
Proc. SPIE
,
9431
, p.
94312Q
.
22.
Liu
,
X.
, and
Yu
,
H.
,
2013
, “
A Survey of Underactuated Mechanical Systems
,”
IET Control Theory Appl.
,
7
(7), pp.
921
935
.
23.
Zhao
,
Y.
, and
Ding
,
Q.
, 2015, “
Dynamic Analysis of Dry Frictional Disc Brake System Based on the Rigid-Flexible Coupled Model
,”
Int. J. Appl. Mech.
,
7
(
3
), pp.
1
21
.
24.
Zain
,
B. M.
, and
Tokhi
,
M.
,
2008
, “
Genetic Algorithm Optimization of PID Controller for a Flexible Manipulator
,”
11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, Coimbra, Portugal, Sept. 8–10, pp.
431
438
.
25.
Kherraz
,
K.
,
Hamerlain
,
M.
, and
Achour
,
N.
,
2014
, “
Robust Sliding Mode Controller for a Class of Under-Actuated Systems
,”
15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering
(
STA
), Hammamet, Tunisia, Dec. 21–23, pp.
942
946
.
26.
Kim
,
M.
, and
Inman
,
D.
,
2001
, “
Reduction of Observation Spillover in Vibration Suppression Using a Sliding Mode Observer
,”
J. Vib. Control
,
7
(
7
), pp.
1087
1105
.
27.
LimtanYakul
,
K.
, and
Wongsaisuwan
,
M.
,
2000
, “
Variable Structure Control for One-Link Flexible Robot Arm
,”
6th IEEE International Workshop on Variable Structure Systems-Advances in Variable Structure Systems
(
VSS
), Gold Coast, Australia, Dec. 7–9, pp. 529–538.
28.
Drazenovic
,
B.
,
1969
, “
The Invariance Conditions in Variable Structure Systems
,”
Automatica
,
5
(
3
), pp.
287
295
.
29.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Vol. 199,
Prentice Hall
,
Upper Saddle River, NJ
, p.
7
.
30.
Lee
,
H.
, and
Utkin
,
V. I.
,
2007
, “
Chattering Suppression Methods in Sliding Mode Control Systems
,”
Annu. Rev. Control
,
31
(
2
), pp.
179
188
.
31.
Tseng
,
M. L.
, and
Chen
,
M. S.
,
2010
, “
Chattering Reduction of Sliding Mode Control by Low-Pass Filtering the Control Signal
,”
Asian J. Control
,
12
(
3
), pp.
392
398
.
32.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usani
,
E.
,
1998
, “
Chattering Avoidance by Second-Order Sliding Mode Control
,”
IEEE Trans. Autom. Control
,
43
(
2
), pp.
241
246
.
33.
Bartolini
,
G.
,
Pisano
,
A.
,
Punta
,
E.
, and
Usai
,
E.
,
2003
, “
A Survey of Application of Second Order Sliding Mode Control to Mechanical Systems
,”
Int. J. Control
,
76
(
9–10
), pp.
875
892
.
34.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
(
6
), pp.
1247
1263
.
35.
Ripamonti
,
F.
,
Leo
,
E.
, and
Resta
,
F.
,
2016
, “
Experimental and Numerical Comparison Between Two Nonlinear Control Logics
,”
Int. J. Appl. Mech.
,
8
(5), p.
1650061
.
36.
Ambrosio
,
P.
,
Cazzulani
,
G.
,
Resta
,
F.
, and
Ripamonti
,
F.
,
2014
, “
An Optimal Vibration Control Logic for Minimising Fatigue Damage in Flexible Structures
,”
J. Sound Vib.
,
333
(
5
), pp.
1269
1280
.
37.
Slotine
,
J. J. E.
,
Hedrick
,
J. K.
, and
Misawa
,
E. A.
,
1987
, “
On Sliding Observers for Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
3
), pp.
245
252
.
38.
Minihan
,
T. P.
,
Lei
,
S.
,
Sun
,
G.
,
Palazzolo
,
A.
,
Kascak
,
A. F.
, and
Calvert
,
T.
,
2003
, “
Large Motion Tracking Control for Thrust Magnetic Bearings With Fuzzy Logic, Sliding Mode, and Direct Linearization
,”
J. Sound Vib.
,
263
(
3
), pp.
549
567
.
39.
Tian
,
H.
,
Nagaya
,
K.
, and
Ikai
,
S.
,
1994
, “
Vibration Control of a Magnetic Gear System by Using Sliding Mode Control
,”
J. Sound Vib.
,
177
(
1
), pp.
57
70
.
40.
Sinha
,
A.
, and
Kao
,
C. K.
,
1991
, “
Independent Modal Sliding Mode Control of Vibration in Flexible Structures
,”
J. Sound Vib.
,
147
(
2
), pp.
352
358
.
You do not currently have access to this content.