In this paper, we study the phenomenon of separation of traveling and standing waves in a one-dimensional rigid-walled circular duct. The underlying mechanism for separation, mode complexity, is linear and introduced here by a damped side branch representing an impedance discontinuity. The left end of the duct is driven at a single frequency by a harmonic acoustic source, and the right end is a rigid termination. The position and impedance of the side branch are independent parameters in the analysis. Sufficient conditions for acoustic wave separation in the duct are derived analytically and employed in a three-dimensional finite element analysis to verify the theoretical result. A physical experiment, consisting of a circular duct with a damped side branch, was constructed based on analytical predictions, the physical parameters were measured or identified, and its performance was documented. These experimental parameters were employed in a second three-dimensional finite element analysis to obtain a direct comparison with experimental results. The comparison reveals the extent to which higher-order (unmodeled) effects degrade the separation phenomenon. It is demonstrated that an intermediate damped side branch used as a nonresonant device can be predictively designed to achieve nearly ideal separation of traveling and standing waves in a rigid-walled circular duct in order to direct and control acoustic energy transmission through the duct system.

References

1.
Munjal
,
M. L.
,
1987
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
,
Wiley
,
New York
, pp.
42
102
.
2.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
, 4th ed.,
Wiley
,
New York
, pp.
272
300
.
3.
Pierce
,
A. D.
,
1989
,
Acoustics: An Introduction to Its Physical Principles and Applications
,
Acoustical Society of America
,
New York
, pp.
313
365
.
4.
Griffin
,
S.
,
Lane
,
S. A.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
11
17
.
5.
Tang
,
S. K.
, and
Li
,
F. Y. C.
,
2003
, “
On Low Frequency Sound Transmission Loss of Double Side Branches: A Comparison Between Theory and Experiment
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
3215
3225
.
6.
Xu
,
M.
,
Selamet
,
A.
, and
Kim
,
H.
,
2010
, “
Dual Helmholtz Resonator
,”
Appl. Acoust.
,
71
(
9
), pp.
822
829
.
7.
Chen
,
K.
,
Chen
,
Y.
,
Lin
,
K.
, and
Weng
,
C.
,
1998
, “
The Improvement on the Transmission Loss of a Duct by Adding Helmholtz Resonators
,”
Appl. Acoust.
,
54
(
1
), pp.
71
82
.
8.
Wang
,
X.
, and
Mak
,
C.-M.
,
2012
, “
Wave Propagation in a Duct With a Periodic Helmholtz Resonators Array
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1172
1182
.
9.
Wang
,
X.
,
Zhu
,
W.
, and
Zhou
,
Y.
,
2016
, “
Sound Transmission in a Duct With a Side-Branch Tube Array Mounted Periodically
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
EL202
EL208
.
10.
Nagaya
,
K.
,
Hano
,
Y.
, and
Suda
,
A.
,
2001
, “
Silencer Consisting of Two-Stage Helmholtz Resonator With Auto-Tuning Control
,”
J. Acoust. Soc. Am.
,
110
(
1
), pp.
289
295
.
11.
Utsumi
,
M.
,
2001
, “
Reduction of Noise Transmission in a Duct by Termination Impedance Control of a Side Branch Resonator
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
289
296
.
12.
Kim
,
W. S.
, and
Prasad
,
M. G.
,
1992
, “
Acoustic Impedance of a Finite Length Duct With Dynamic Termination
,”
J. Acoust. Soc. Am.
,
91
(
6
), pp.
3575
3578
.
13.
Bedout
,
J. D.
,
Franchek
,
M.
,
Bernhard
,
R.
, and
Mongeau
,
L.
,
1997
, “
Adaptive-Passive Noise Control With Self-Tuning Helmholtz Resonators
,”
J. Sound Vib.
,
202
(
1
), pp.
109
123
.
14.
Estève
,
S. J.
, and
Johnson
,
M. E.
,
2004
, “
Development of an Adaptive Helmholtz Resonator for Broadband Noise Control
,”
ASME
Paper No. IMECE2004-61179.
15.
Jordan
, V
. L.
,
1947
, “
The Application of Helmholtz Resonators to Sound-Absorbing Structures
,”
J. Acoust. Soc. Am.
,
19
(
6
), pp.
972
981
.
16.
Kim
,
S.
, and
Kim
,
Y.-H.
,
2006
, “
Helmholtz Resonator Array for Low-Frequency Sound Absorption
,”
J. Acoust. Soc. Am.
,
120
(
5
), p.
3188
.
17.
Blanchard
,
A.
,
Gendelman
,
O. V.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Mode Complexity in a Harmonically Forced String With a Local Spring-Damper and Transitions From Vibrations to Waves
,”
J. Sound Vib.
,
334
, pp.
282
295
.
18.
Ahmida
,
K. M.
, and
Arruda
,
J. R. F.
,
2002
, “
On the Relation Between Complex Modes and Wave Propagation Phenomena
,”
J. Sound Vib.
,
255
(
4
), pp.
663
684
.
19.
Sas
,
P.
, and
Augusztinovicz
,
F.
,
1999
, “
Acoustic Modal Analysis
,”
Modal Analysis and Testing
,
J. M. M.
Silva
, and
N. M. M.
Maia
, eds.,
Springer, Dordrecht
,
The Netherlands
, pp.
487
506
.
20.
Augusztinovicz
,
F.
,
Sas
,
P.
,
Otte
,
D.
, and
Larsson
,
P.-O.
,
1992
, “
Analytical and Experimental Study of Complex Modes in Acoustical Systems
,”
Tenth International Modal Analysis Conference
, San Diego, CA, Feb. 3–7, pp.
110
116
.
21.
Blanchard
,
A.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Damping-Induced Interplay Between Vibrations and Waves in a Forced Non-Dispersive Elastic Continuum With Asymmetrically Placed Local Attachments
,”
Proc. R. Soc. A
,
471
(
2176
), p.
20140402
.
22.
ANSYS, 2013, “
ANSYS® Academic Research, Release 15.0, Help System, ANSYS Mechanical APDL Acoustic Analysis Guide
,” ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.