In this paper, identification of energy dissipation in the joints of a lab-scale structure is accomplished. The identification is carried out by means of an energy flow analysis and experimental data. The devised procedure enables to formulate an energy balance in the vicinity of the joints to obtain local energy dissipation. In this paper, a damping matrix based on the locally identified damping coefficients is formulated. The formulated damping matrix is later used in a five-degrees-of-freedom (5DOF) system for validation. The results obtained with the proposed method are in good agreement with the experimental data, especially in the low frequency range.
Issue Section:
Research Papers
References
1.
Roettgen
, D. R.
, and Allen
, M. S.
, 2017
, “Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework
,” Mech. Syst. Signal Process.
, 84
(Part B
), pp. 152
–170
.2.
Abad
, J.
, Franco
, J.
, Celorrio
, R.
, and Lezáun
, L.
, 2012
, “Design of Experiments and Energy Dissipation Analysis for a Contact Mechanics 3D Model of Frictional Bolted Lap Joints
,” Adv. Eng. Software
, 45
(1
), pp. 42
–53
.3.
Mayes
, R. L.
, Pacini
, B. R.
, and Roettgen
, D. R.
, 2016
, A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
, Springer International Publishing
, Cham
, Switzerland, pp. 57
–76
.4.
Deaner
, B. J.
, Allen
, M. S.
, Starr
, M. J.
, Segalman
, D. J.
, and Sumali
, H.
, 2015
, “Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures
,” ASME J. Vib. Acoust.
, 137
(2
), p. 021012
.5.
Ewins
, D.
, 2000
, Modal Testing: Theory, Practice and Application
, Research Studies Press
, Hertfordsire, UK
.6.
Peeters
, B.
, and Roeck
, G. D.
, 2001
, “Stochastic System Identification for Operational Modal Analysis: A Review
,” ASME J. Dyn. Syst., Meas., Control
, 123
(4
), pp. 659
–667
.7.
He
, J.
, and Fu
, Z.-F.
, 2001
, Modal Analysis
, Butterworth-Heinemann
, Oxford, UK
.8.
Ma
, X.
, Bergman
, L.
, and Vakakis
, A.
, 2001
, “Identification of Bolted Joints Through Laser Vibrometry
,” J. Sound Vib.
, 246
(3
), pp. 441
–460
.9.
Mehrpouya
, M.
, Sanati
, M.
, and Park
, S.
, 2016
, “Identification of Joint Dynamics in 3D Structures Through the Inverse Receptance Coupling Method
,” Int. J. Mech. Sci.
, 105
, pp. 135
–145
.10.
Wohlever
, J.
, and Bernhard
, R.
, 1992
, “Mechanical Energy Flow Models of Rods and Beams
,” J. Sound Vib.
, 153
(1
), pp. 1
–19
.11.
Lase
, Y.
, Ichchou
, M.
, and Jezequel
, L.
, 1996
, “Energy Flow Analysis of Bars and Beams: Theoretical Formulations
,” J. Sound Vib.
, 192
(1
), pp. 281
–305
.12.
Bouthier
, O.
, and Bernhard
, R.
, 1995
, “Simple Models of the Energetics of Transversely Vibrating Plates
,” J. Sound Vib.
, 182
(1
), pp. 149
–164
.13.
Han
, F.
, Bernhard
, R.
, and Mongeau
, L.
, 1997
, “Energy Flow Analysis of Vibrating Beams and Plates for Discrete Random Excitations
,” J. Sound Vib.
, 208
(5
), pp. 841
–859
.14.
Lebot
, A.
, and Jezequel
, L.
, 1993
, “Energy Methods Applied to Transverse Vibrations of Beams
,” Fourth International Congress on Intensity Techniques
, Senlis, France, pp. 371
–378
.15.
Pinnington
, R.
, and Lednik
, D.
, 1996
, “Transient Energy Flow Between Two Coupled Beams
,” J. Sound Vib.
, 189
(2
), pp. 265
–287
.16.
Alfredsson
, K.
, 1997
, “Active and Reactive Structural Energy Flow
,” ASME J. Vib. Acoust.
, 119
(1
), pp. 70
–79
.17.
Sorokin
, S.
, Nielsen
, J.
, and Olhoff
, N.
, 2001
, “Analysis and Optimization of Energy Flows in Structures Composed of Beam Elements—Part I: Problem Formulation and Solution Technique
,” Struct. Multidiscip. Optim.
, 22
(1
), pp. 3
–11
.18.
Bouthier
, O.
, and Bernhard
, R.
, 1995
, “Simple Models of Energy Flow in Vibrating Membranes
,” J. Sound Vib.
, 182
(1
), pp. 129
–147
.19.
Möhring
, W.
, 1978
, “Acoustic Energy Flux in Nonhomogeneous Ducts
,” J. Acoust. Soc. Am.
, 64
(4
), pp. 1186
–1189
.20.
Bonnor
, W. B.
, and Vaidya
, P. C.
, 1970
, “Spherically Symmetric Radiation of Charge in Einstein-Maxwell Theory
,” Gen. Relativ. Gravitation
, 1
(2
), pp. 127
–130
.21.
Metrikine
, A.
, Battjes
, J.
, and Kuiper
, G.
, 2006
, “On the Energy Transfer at Boundaries of Translating Continua
,” J. Sound Vib.
, 297
(3–5
), pp. 1107
–1113
.22.
Lee
, S. Y.
, and Mote
, C. D.
, 1997
, “A Generalized Treatment of the Energetics of Translating Continua—Part I: Strings and Second Order Tensioned Pipes
,” J. Sound Vib.
, 204
(5
), pp. 717
–734
.23.
Lee
, S. Y.
, and Mote
, C. D.
, 1997
, “A Generalized Treatment of the Energetics of Translating Continua—Part II: Beams and Fluid Conveying Pipes
,” J. Sound Vib.
, 204
(5
), pp. 735
–753
.24.
Metrikine
, A.
, 2008
, “On Variation of Energy and Axial Momentum in One-Dimensional Translating Continua
,” Sixth EUROMECH Nonlinear Dynamics Conference
(ENOC
), St. Petersburg, Russia, June 30–July 4.http://lib.physcon.ru/file?id=36bc670770d525.
Schmitz
, T.
, and Smith
, K.
, 2012
, Mechanical Vibrations
, Springer
, New York
.Copyright © 2018 by ASME
You do not currently have access to this content.