In this paper, identification of energy dissipation in the joints of a lab-scale structure is accomplished. The identification is carried out by means of an energy flow analysis and experimental data. The devised procedure enables to formulate an energy balance in the vicinity of the joints to obtain local energy dissipation. In this paper, a damping matrix based on the locally identified damping coefficients is formulated. The formulated damping matrix is later used in a five-degrees-of-freedom (5DOF) system for validation. The results obtained with the proposed method are in good agreement with the experimental data, especially in the low frequency range.

References

1.
Roettgen
,
D. R.
, and
Allen
,
M. S.
,
2017
, “
Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework
,”
Mech. Syst. Signal Process.
,
84
(
Part B
), pp.
152
170
.
2.
Abad
,
J.
,
Franco
,
J.
,
Celorrio
,
R.
, and
Lezáun
,
L.
,
2012
, “
Design of Experiments and Energy Dissipation Analysis for a Contact Mechanics 3D Model of Frictional Bolted Lap Joints
,”
Adv. Eng. Software
,
45
(
1
), pp.
42
53
.
3.
Mayes
,
R. L.
,
Pacini
,
B. R.
, and
Roettgen
,
D. R.
,
2016
,
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
,
Springer International Publishing
,
Cham
, Switzerland, pp.
57
76
.
4.
Deaner
,
B. J.
,
Allen
,
M. S.
,
Starr
,
M. J.
,
Segalman
,
D. J.
, and
Sumali
,
H.
,
2015
, “
Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021012
.
5.
Ewins
,
D.
,
2000
,
Modal Testing: Theory, Practice and Application
,
Research Studies Press
,
Hertfordsire, UK
.
6.
Peeters
,
B.
, and
Roeck
,
G. D.
,
2001
, “
Stochastic System Identification for Operational Modal Analysis: A Review
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
4
), pp.
659
667
.
7.
He
,
J.
, and
Fu
,
Z.-F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Ma
,
X.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2001
, “
Identification of Bolted Joints Through Laser Vibrometry
,”
J. Sound Vib.
,
246
(
3
), pp.
441
460
.
9.
Mehrpouya
,
M.
,
Sanati
,
M.
, and
Park
,
S.
,
2016
, “
Identification of Joint Dynamics in 3D Structures Through the Inverse Receptance Coupling Method
,”
Int. J. Mech. Sci.
,
105
, pp.
135
145
.
10.
Wohlever
,
J.
, and
Bernhard
,
R.
,
1992
, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
,
153
(
1
), pp.
1
19
.
11.
Lase
,
Y.
,
Ichchou
,
M.
, and
Jezequel
,
L.
,
1996
, “
Energy Flow Analysis of Bars and Beams: Theoretical Formulations
,”
J. Sound Vib.
,
192
(
1
), pp.
281
305
.
12.
Bouthier
,
O.
, and
Bernhard
,
R.
,
1995
, “
Simple Models of the Energetics of Transversely Vibrating Plates
,”
J. Sound Vib.
,
182
(
1
), pp.
149
164
.
13.
Han
,
F.
,
Bernhard
,
R.
, and
Mongeau
,
L.
,
1997
, “
Energy Flow Analysis of Vibrating Beams and Plates for Discrete Random Excitations
,”
J. Sound Vib.
,
208
(
5
), pp.
841
859
.
14.
Lebot
,
A.
, and
Jezequel
,
L.
,
1993
, “
Energy Methods Applied to Transverse Vibrations of Beams
,”
Fourth International Congress on Intensity Techniques
, Senlis, France, pp.
371
378
.
15.
Pinnington
,
R.
, and
Lednik
,
D.
,
1996
, “
Transient Energy Flow Between Two Coupled Beams
,”
J. Sound Vib.
,
189
(
2
), pp.
265
287
.
16.
Alfredsson
,
K.
,
1997
, “
Active and Reactive Structural Energy Flow
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
70
79
.
17.
Sorokin
,
S.
,
Nielsen
,
J.
, and
Olhoff
,
N.
,
2001
, “
Analysis and Optimization of Energy Flows in Structures Composed of Beam Elements—Part I: Problem Formulation and Solution Technique
,”
Struct. Multidiscip. Optim.
,
22
(
1
), pp.
3
11
.
18.
Bouthier
,
O.
, and
Bernhard
,
R.
,
1995
, “
Simple Models of Energy Flow in Vibrating Membranes
,”
J. Sound Vib.
,
182
(
1
), pp.
129
147
.
19.
Möhring
,
W.
,
1978
, “
Acoustic Energy Flux in Nonhomogeneous Ducts
,”
J. Acoust. Soc. Am.
,
64
(
4
), pp.
1186
1189
.
20.
Bonnor
,
W. B.
, and
Vaidya
,
P. C.
,
1970
, “
Spherically Symmetric Radiation of Charge in Einstein-Maxwell Theory
,”
Gen. Relativ. Gravitation
,
1
(
2
), pp.
127
130
.
21.
Metrikine
,
A.
,
Battjes
,
J.
, and
Kuiper
,
G.
,
2006
, “
On the Energy Transfer at Boundaries of Translating Continua
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1107
1113
.
22.
Lee
,
S. Y.
, and
Mote
,
C. D.
,
1997
, “
A Generalized Treatment of the Energetics of Translating Continua—Part I: Strings and Second Order Tensioned Pipes
,”
J. Sound Vib.
,
204
(
5
), pp.
717
734
.
23.
Lee
,
S. Y.
, and
Mote
,
C. D.
,
1997
, “
A Generalized Treatment of the Energetics of Translating Continua—Part II: Beams and Fluid Conveying Pipes
,”
J. Sound Vib.
,
204
(
5
), pp.
735
753
.
24.
Metrikine
,
A.
,
2008
, “
On Variation of Energy and Axial Momentum in One-Dimensional Translating Continua
,”
Sixth EUROMECH Nonlinear Dynamics Conference
(
ENOC
), St. Petersburg, Russia, June 30–July 4.http://lib.physcon.ru/file?id=36bc670770d5
25.
Schmitz
,
T.
, and
Smith
,
K.
,
2012
,
Mechanical Vibrations
,
Springer
,
New York
.
You do not currently have access to this content.