The severe vibration induced by surge and rotating stall is an obstacle to the stability of a magnetically suspended centrifugal compressor (MSCC). In order to suppress the severe vibration caused by surge instability, this paper focuses on compressor surge performance improvements enabled by power amplifier control improvements which result in increased dynamic load capacity (DLC) of the systems axial thrust magnetic bearing. A complete discrete-time model of the active magnetic bearing (AMB) power amplifier, composed of three piecewise linear intervals, is developed. A comprehensive view of the dynamic evolution process from stable state to bifurcation for the power amplifier is also analyzed. In order to stabilize the unstable periodic orbits in the power amplifier, a time-delay feedback control (TDFC) method is introduced to enhance the stability of the power amplifier, while the MSCC is subjected to the surge instability. Simulation results show that the stable region of the power amplifier is extended significantly using the TDFC method. Finally, the experimental investigations performed by an MSCC test rig demonstrate the effectiveness of the proposed solution under the conditions of modified surge and mild surge.

References

1.
Zhong
,
W.
,
Palazzolo
,
A.
, and
Kang
,
X.
,
2017
, “
Multi-Objective Optimization Design of Nonlinear Magnetic Bearing Rotordynamic System
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011011
.
2.
Zheng
,
S.
,
Han
,
B.
, and
Guo
,
L.
,
2014
, “
Composite Hierarchical Antidisturbance Control for Magnetic Bearing System Subject to Multiple External Disturbances
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7004
7012
.
3.
Jith
,
J.
, and
Sarkar
,
S.
,
2017
, “
Acousto-Elastic Interactions in High-Pressure CO2 Centrifugal Compressors
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061013
.
4.
Liaw
,
D. C.
,
Song
,
C. C.
, and
Huang
,
J. T.
,
2004
, “
Robust Stabilization of a Centrifugal Compressor With Spool Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
12
(
6
), pp.
966
972
.
5.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
Berlin
.
6.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
4
(5), pp.
580
586
.
7.
Shafai
,
B.
,
Beale
,
S.
,
Larocca
,
P.
, and
Cusson
,
E.
,
1994
, “
Magnetic Bearing Control Systems and Adaptive Forced Balancing
,”
IEEE Control Syst.
,
14
(
2
), pp.
4
13
.
8.
Lum
,
K. Y.
,
Coppola
, V
. T.
, and
Bernstein
,
D. S.
,
1996
, “
Adaptive Autocentering Control for an Active Magnetic Bearing Supporting a Rotor With Unknown Mass Imbalance
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
587
597
.
9.
Chen
,
Q.
,
Liu
,
G.
, and
Han
,
B.
,
2015
, “
Suppression of Imbalance Vibration in amb-Rotor Systems Using Adaptive Frequency Estimator
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7696
7705
.
10.
Zheng
,
S.
,
Han
,
B.
,
Feng
,
R.
, and
Jiang
,
Y.
,
2015
, “
Vibration Suppression Control for AMB-Supported Motor Driveline System Using Synchronous Rotating Frame Transformation
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5700
5708
.
11.
Kurvinen
,
E.
,
Fittro
,
R.
, and
Maslen
,
E.
,
2016
, “
Improving Compressor Surge Performance With Advanced Control
,”
Proc. Inst. Mech. Eng. Part I
,
230
(
7
), pp.
672
679
.
12.
Cole
,
M. O. T.
,
Chamroon
,
C.
, and
Ngamprapasom
,
P.
,
2010
, “
Force Feedback Control for Active Stabilization of Synchronous Whirl Orbits in Rotor Systems With Non-Linear Stiffness Elements
,”
ASME
Paper No. GT2010-23246.
13.
Chen
,
S. L.
,
2011
, “
Nonlinear Smooth Feedback Control of a Three-Pole Active Magnetic Bearing System
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
615
621
.
14.
Chen
,
S. Y.
, and
Lin
,
F. J.
,
2011
, “
Robust Nonsingular Terminal Sliding-Mode Control for Nonlinear Magnetic Bearing System
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
636
643
.
15.
Gerami
,
A.
,
Allaire
,
P.
, and
Fittro
,
R.
,
2015
, “
Control of Magnetic Bearing With Material Saturation Nonlinearity
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
6
), p.
061002
.
16.
Basak
,
B.
, and
Parui
,
S.
,
2010
, “
Exploration of Bifurcation and Chaos in Buck Converter Supplied From a Rectifier
,”
IEEE Trans. Power Electron.
,
25
(
6
), pp.
1556
1564
.
17.
Uicich
,
G.
,
Maestri
,
S.
,
Benedetti
,
M.
, and
Carrica
,
D.
,
2014
, “
A Nonlinear Approach for Assessing Stability in Line-Commutated Converters With an Integrating Controller
,”
IEEE Trans. Power Electron.
,
29
(
1
), pp.
339
346
.
18.
Robert
,
B.
, and
Robert
,
C.
,
2002
, “
Border Collision Bifurcations in a One-Dimensional Piecewise Smooth Map for a PWM Current-Programmed H-Bridge Inverter
,”
Int. J. Control
,
75
(
16–17
), pp.
1356
1367
.
19.
Lu
,
H. H. C.
, and
Robert
,
B.
,
2003
, “
Control of Chaos in a PWM Current-Mode H-Bridge Inverter Using Time-Delayed Feedback
,”
IEEE Trans. Circuits Syst. I
,
50
(
8
), pp.
1125
1129
.
20.
Asahara
,
H.
, and
Kousaka
,
T.
,
2011
, “
Bifurcation Analysis in a PWM Current-Controlled H-Bridge Inverter
,”
Int. J. Bifurcation Chaos
,
21
(
3
), pp.
985
996
.
21.
Akatsu
,
S.
,
Torikai
,
H.
, and
Saito
,
T.
,
2007
, “
Zero-Cross Instantaneous State Setting for Control of a Bifurcating H-Bridge Inverter
,”
Int. J. Bifurcation Chaos
,
17
(
10
), pp.
3571
3575
.
22.
Wang
,
X. M.
,
Zhang
,
B.
, and
Qiu
,
D. Y.
,
2009
, “
The Fast- and Slow-Scale Stabilities and Chaotic Motion of H-Bridge Sine Inverter
,”
Acta Phys. Sin.
,
58
(
4
), pp.
2248
2254
(in chinese).
23.
Fang
,
J.
, and
Ren
,
Y.
,
2012
, “
Self-Adaptive Phase-Lead Compensation Based on Unsymmetrical Current Sampling Resistance Network for Magnetic Bearing Switching Power Amplifiers
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
1218
1227
.
You do not currently have access to this content.