The equivalent source method (ESM) and monopole time reversal method (MTRM) are two popular techniques for noise source localization. These two methods have some similar characteristics, such as using the pressure field measured by a microphone array as the input and using similar propagation matrices obtained from the Green's function. However, the spatial resolutions of results obtained by these two methods are different. The aim of this paper is to reveal the reason resulting in this difference from a theoretical analysis and compare the performance of these two methods using results from numerical simulations and experiments. Using the singular value decomposition (SVD) technique, the difference between the two methods is found to be only the diagonal matrices of singular values, and the two methods are equivalent after simply replacing the diagonal matrix in the MTRM with its inverse. Comparison of the results demonstrates that the ESM can calculate the real source strength and obtain a high spatial resolution due to the significant amplification of evanescent waves in the inverse process. However, it does not work when the signal-to-noise ratio (SNR) is low or the measurement distance is large. The performance of ESM under these situations can be significantly improved by introducing a regularization procedure. While the MTRM fails to calculate the real source strength and locate the source at low frequencies due to the loss of information of evanescent waves, it works well at high frequencies even with a low SNR and a large measurement distance.

References

1.
Maynard
,
J. D.
,
Williams
,
E. G.
, and
Lee
,
Y.
,
1985
, “
Nearfield Acoustic Holography—Part I: Theory of Generalized Holography and the Development of NAH
,”
J. Acoust. Soc. Am.
,
78
(
4
), pp.
1395
1413
.
2.
Cassereau
,
D.
, and
Fink
,
M.
,
1993
, “
Focusing With Plane Time-Reversal Mirrors: An Efficient Alternative to Closed Cavities
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2373
2386
.
3.
de Rosny
,
J.
, and
Fink
,
M.
,
2007
, “
Focusing Properties of Near-Field Time Reversal
,”
Phys. Rev. A
,
76
(
6
), p.
065801
.
4.
Fannjiang
,
A. C.
,
2009
, “
On Time Reversal Mirrors
,”
Inverse Probl.
,
25
(
9
), p.
095010
.
5.
Klemm
,
M.
,
Craddock
,
I. J.
,
Leendertz
,
J. A.
,
Preece
,
A.
, and
Benjamin
,
R.
,
2008
, “
Improved Delay-and-Sum Beamforming Algorithm for Breast Cancer Detection
,”
Int. J. Antennas Propag.
,
4
, pp.
264
276
.
6.
Rakotoarisoa
,
I.
,
Fischer
,
J.
,
Valeau
,
V.
,
Marx
,
D.
, and
Prax
,
C.
,
2014
, “
Time-Domain Delay-and-Sum Beamforming for Time-Reversal Detection of Intermittent Acoustic Sources in Flows
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2675
2686
.
7.
Besson
,
A.
,
Carrillo
,
R. E.
,
Bernard
,
O.
,
Wiaux
,
Y.
, and
Thiran
,
J. P.
,
2016
, “
Compressed Delay-and-Sum Beamforming for Ultrafast Ultrasound Imaging
,”
IEEE International Conference on Image Processing
(
ICIP
), Phoenix, AZ, Sep. 25–28, pp.
2509
2513
.
8.
Williams
,
E. G.
, and
Maynard
,
J. D.
,
1980
, “
Holographic Imaging Without the Wavelength Resolution Limit
,”
Phys. Rev. Lett.
,
45
(
7
), pp.
554
557
.
9.
Loyau
,
T.
,
Pascal
,
J. C.
, and
Gaillard
,
P.
,
1988
, “
Broadband Acoustic Holography Reconstruction From Acoustic Intensity Measurement—I: Principle of the Method
,”
J. Acoust. Soc. Am.
,
84
(
5
), pp.
1744
1750
.
10.
Veronesi
,
W. A.
, and
Maynard
,
J. D.
,
1989
, “
Digital Holography Reconstruction of Sources With Arbitrarily Shaped Surfaces
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
588
598
.
11.
Zhang
,
Y.
,
Zhang
,
X. Z.
,
Bi
,
C. X.
, and
Zhang
,
Y. B.
,
2017
, “
An Inverse Direct Time Domain Boundary Element Method for the Reconstruction of Transient Acoustic Field
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021013
.
12.
Wang
,
Z.
, and
Wu
,
S. F.
,
1997
, “
Helmholtz Equation-Least Method for Reconstructing the Acoustic Pressure Field
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2020
2032
.
13.
Wu
,
S. F.
, and
Zhao
,
X.
,
2002
, “
Combined Helmholtz Equation-Least Squares Method for Reconstructing the Acoustic Radiation From Arbitrarily Shaped Objects
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
179
188
.
14.
Sarkissian
,
A.
,
2005
, “
Method of Superposition Applied to Patch Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
118
(
2
), pp.
671
678
.
15.
Bi
,
C. X.
,
Chen
,
X. Z.
,
Chen
,
J.
, and
Zhou
,
R.
,
2005
, “
Nearfield Acoustic Holography Based on the Equivalent Source Method
,”
Sci. China Ser. E
,
48
(
3
), pp.
338
353
.
16.
Valdivia
,
N. P.
, and
Williams
,
E. G.
,
2006
, “
Study of the Comparison of the Methods of Equivalent Sources and Boundary Element Methods for Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
120
(
6
), pp.
3694
3705
.
17.
Bi
,
C. X.
,
Dong
,
B. C.
,
Zhang
,
X. Z.
, and
Zhang
,
Y. B.
,
2017
, “
Equivalent Source Method-Based Nearfield Acoustic Holography in a Moving Medium
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051017
.
18.
Zhang
,
X. Z.
,
Bi
,
C. X.
,
Zhang
,
Y. B.
, and
Xu
,
L.
,
2017
, “
A Time-Domain Inverse Technique for the Localization and Quantification of Rotating Sound Sources
,”
Mech. Syst. Signal Process.
,
90
, pp.
15
29
.
19.
Tanter
,
M.
,
Thomas
,
J. L.
, and
Fink
,
M.
,
2000
, “
Time Reversal and the Inverse Filter
,”
J. Acoust. Soc. Am.
,
108
(
1
), pp.
223
234
.
20.
Higley
,
W. J.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2006
, “
Relationship Between Time Reversal and Linear Equalization in Digital Communications
,”
J. Acoust. Soc. Am.
,
120
(
1
), pp.
35
37
.
21.
Prada
,
C.
, and
Thomas
,
J. L.
,
2003
, “
Experimental Subwavelength Localization of Scatterers by Decomposition of the Time Reversal Operator Interpreted as a Covariance Matrix
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
235
243
.
22.
Davy
,
M.
,
Minonzio
,
J. G.
,
de Rosny
,
J.
,
Prada
,
C.
, and
Fink
,
M.
,
2009
, “
Influence of Noise on Subwavelength Imaging of Two Close Scatterers Using Time Reversal Method: Theory and Experiments
,”
Prog. Electromagn. Res.
,
98
, pp.
333
358
.
23.
Koopmann
,
G. H.
,
Song
,
L.
, and
Fahnline
,
J. B.
,
1989
, “
A Method for Computing Acoustic Fields Based on the Principle of Wave Superposition
,”
J. Acoust. Soc. Am.
,
86
(
6
), pp.
2433
2438
.
24.
Fink
,
M.
,
Prada
,
C.
,
Wu
,
F.
, and
Cassereau
,
D.
,
1989
, “
Self Focusing in Inhomogeneous Media With Time Reversal Acoustic Mirrors
,”
IEEE
Ultrasonics Symposium
, Montreal, QC, Canada, Oct. 3–6, pp.
681
686
.
25.
Hillion
,
P.
,
2006
, “
Acoustic Pulse Reflection at a Time-Reversal Mirror
,”
J. Sound Vib.
,
292
(
3–5
), pp.
488
503
.
26.
Cassereau
,
D.
,
Wu
,
F.
, and
Fink
,
M.
,
1990
, “
Limits of Self-Focusing Using Closed Time-Reversal Cavities and Mirrors—Theory and Experiment
,”
IEEE
Ultrasonics Symposium
, Honolulu, HI, Dec. 4–7, pp.
1613
1618
.
27.
Lerosey
,
G.
,
de Rosny
,
J.
,
Tourin
,
A.
, and
Fink
,
M.
,
2007
, “
Focusing Beyond the Diffraction Limit With Far-Field Time Reversal
,”
Science
,
315
(
5815
), pp.
1120
1122
.
28.
de Rosny
,
J.
, and
Fink
,
M.
,
2002
, “
Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink
,”
Phys. Rev. Lett.
,
89
(
12
), p.
124301
.
29.
Bavu
,
É.
,
Besnainou
,
C.
,
Gibiat
,
V.
,
de Rosny
,
J.
, and
Fink
,
M.
,
2007
, “
Subwavelength Sound Focusing Using a Time-Reversal Acoustic Sink
,”
Acta Acust. Acust.
,
93
(
5
), pp.
706
715
.https://www.researchgate.net/publication/225102488_Subwavelength_sound_focusing_using_a_time-reversal_acoustic_sink
30.
Bavu
,
É.
, and
Berry
,
A.
,
2009
, “
High-Resolution Imaging of Sound Sources in Free Field Using a Numerical Time-Reversal Sink
,”
Acta Acust. Acust.
,
95
(
4
), pp.
595
606
.
31.
Conti
,
S. G.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2007
, “
Near-Field Time-Reversal Amplification
,”
J. Acoust. Soc. Am.
,
121
(
6
), pp.
3602
3606
.
32.
Bi
,
C. X.
,
Li
,
Y. C.
,
Zhang
,
Y. B.
, and
Xu
,
L.
,
2017
, “
Super-Resolution Imaging of Low-Frequency Sound Sources Using a Corrected Monopole Time Reversal Method
,”
J. Sound Vib.
,
410
, pp.
303
317
.
33.
Kim
,
G. T.
, and
Lee
,
B. H.
,
1990
, “
3-D Sound Source Reconstruction and Field Reprediction Using the Helmholtz Integral Equation
,”
J. Sound Vib.
,
136
(
2
), pp.
245
261
.
34.
Borgiotti
,
G. V.
,
1990
, “
The Power Radiated by a Vibrating Body in an Acoustic Fluid and Its Determination From Boundary Measurements
,”
J. Acoust. Soc. Am.
,
88
(
4
), pp.
1884
1893
.
35.
Photiadis
,
D. M.
,
1990
, “
The Relationship of Singular Value Decomposition to Wave-Vector Filtering in Sound Radiation Problems
,”
J. Acoust. Soc. Am.
,
88
(
2
), pp.
1152
1159
.
36.
Williams
,
E. G.
,
2001
, “
Regularization Methods for Near-Field Acoustical Holography
,”
J. Acoust. Soc. Am.
,
110
(
4
), pp.
1976
1988
.
37.
Yoon
,
S. H.
, and
Nelson
,
P. A.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods—Part II: Experimental Investigation of Methods for Choosing Regularization Parameters
,”
J. Sound Vib.
,
233
(
4
), pp. 665–701.
38.
Harker
,
B. M.
, and
Anderson
,
B. E.
,
2013
, “
Optimization of the Array Mirror for Time Reversal Techniques Used in a Half-Space Environment
,”
J. Acoust. Soc. Am.
,
133
(
5
), pp.
EL351
EL357
.
You do not currently have access to this content.