Conventional frequency domain beamforming (FDBF) relies on the measured cross-spectral matrix (CSM). However, in wind tunnel tests, the CSM diagonal is contaminated by the interference of incoherent noise after long-time averaging which leads the source map to poor resolution. Diagonal removal (DR) can suppress the noise in beamforming results via the deletion of CSM diagonal, but this method leads to the underestimation of source levels and some negative powers in source maps. Some advanced methods, such as background subtraction, make use of background noise reference to counteract the effects of contamination; however, the results usually become unreliable, because the background noise is difficult to keep constant in different measurements. Diagonal denoising (DD) beamforming is a recent approach to suppress the contamination effects, but it attenuates the noise suppression performance. To overcome the limitations of the above methods, a new method called denoising weighting beamforming (DWB) is proposed in this study on the basis of CSM DD and an iterative regularization method is applied to solve the acoustical inverse problem. Besides, in order to correct the phase mismatch caused by the influence of flow on sound propagation, the shear flow correction is added before using DWB. Experiments on sound source reconstruction are conducted in the environment with the flow. Acoustics data obtained via this method show the successful removal of incoherent noise and the corrected phase mismatch. Furthermore, the sound source localization results are promising and the proposed method is simple to implement.

References

1.
Mixson
,
J. S.
, and
Louis
,
A. R.
,
1987
, “
Acoustic Fatigue: Overview of Activities at NASA Langley
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA TM-89143
.
2.
Nguyen
,
K.
,
Betzina
,
M.
, and
Kitaplioglu
,
C.
,
2001
, “
Full-Scale Demonstration of Higher Harmonic Control for Noise and Vibration Reduction on the XV-15 Rotor
,”
J. Am. Helicopter Soc.
,
46
(
3
), pp.
182
–1
91
.
3.
Soderman
,
P. T.
, and
Allen
,
C. S.
,
2002
, “
Microphone Measurements in and out of Airstream
,”
Aeroacoustic Measurement
,
Springer-Verlag
,
Berlin
, pp.
62
97
.
4.
Bahr
,
C. J.
, and
Horne
,
W. C.
,
2015
, “
Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing
,”
AIAA
Paper No. 2015-3272.
5.
Johnson
,
D. H.
, and
Dudgeon
,
D. E.
,
1993
,
Array Signal Processing: Concepts and Techniques
,
Prentice Hall
,
Upper Saddle River, NJ
, Chap. 4.
6.
Dougherty
,
R. P.
,
2002
,
Beamforming in Acoustic Testing
,
Aeroacoustic Measurement
,
Springer-Verlag, New York
, pp.
62
97
.
7.
Qiang
,
L. X.
,
2013
, “
The Research and Implementation of Microphone Wind Noise Suppression Method
,” Ph.D. thesis, University of Chinese Academy of Sciences, Peking, Huairou, China.
8.
Hosier
,
R. N.
, and
Donavan
,
P. R.
,
1978
, “
Microphone Windscreen Performance
,” National Bureau of Standards, Washington, DC, Report No.
NBSIR79-1599
.
9.
Jaeger
,
S. M.
,
Horne
,
W. C.
, and
Allen
,
C. S.
,
2000
, “
Effect of Surface Treatment on Array Microphone Self-Noise
,”
AIAA
Paper No. 2000-1937
.
10.
Christensen
,
J. J.
, and
Hald
,
J.
,
2004
,
Beamforming
,
Bruel & Kjaer
,
Nærum, Denmark
.
11.
Koop
,
L.
, and
Ehrenfried
,
K.
,
2008
, “
Microphone-Array Processing for Wind-Tunnel Measurements With Strong Background Noise
,”
AIAA
Paper No. 2008-2907.
12.
Blacodon
,
D.
,
2011
, “
Array Processing for Noisy Data: Application for Open and Closed Wind Tunnels
,”
AIAA J.
,
49
(
1
), pp.
55
66
.
13.
Dougherty
,
R. P.
,
2016
, “
Cross Spectral Matrix Diagonal Optimization
,”
Sixth Berlin Beamforming Conference (BeBeC)
, Berlin, Germany, Mar. 5–6, Paper No.
BeBeC-2016-S2
.
14.
Hald
,
J.
,
2016
, “
Cross-Spectral Matrix Diagonal Reconstruction
,”
INTER-NOISE
, Hamburg, Germany, Aug. 21–24, pp.
5833
5844
.
15.
Hald
,
J.
,
2017
, “
Removal of Incoherent Noise From an Averaged Cross-Spectral Matrix
,”
J. Acoust. Soc. Am.
,
142
(
2
), pp.
846
854
.
16.
Dinsenmeyer
,
A.
, and
Antoni
,
J.
,
2018
, “
On the Denoising of Cross-Spectral Matrices for (Aero)Acoustic Applications
,”
Seventh Berlin Beamforming Conference (BeBeC)
, Berlin, Germany, Mar. 5–6, Paper No.
BeBeC-2018-S02
.
17.
Bai
,
M. R.
, and
Lee
,
J.
,
1998
, “
Industrial Noise Source Identification by Using an Acoustic Beamforming System
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
426
433
.
18.
Humphreys
,
W.
, Jr.
,
Brooks
,
T.
,
Hunter
,
W.
, Jr.
, and
Meadows
,
K.
,
1998
, “
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
,”
AIAA
Paper No. 98-0471.
19.
Li
,
X.
,
Tong
,
W.
, and
Jiang
,
M.
,
2014
, “
Sound Source Localization Via Elastic Net Regularization
,”
Fifth Berlin Beamforming Conference (BeBeC)
, Berlin, Germany, Feb. 19–20, Paper No. BeBeC-2014-02.
20.
Vandenberghe
,
L.
, and
Boyd
,
S.
,
1996
, “
Semidefinite Programming
,”
SIAM Rev.
,
38
(
1
), pp.
49
95
.
21.
Gauthier
,
P. A.
,
Camier
,
C.
,
Pasco
,
Y.
,
Berry
,
A.
,
Chambatte
,
E.
,
Lapointe
,
R.
, and
Delalay
,
M. A.
,
2011
, “
Beamforming Regularization Matrix and Inverse Problems Applied to Sound Field Measurement and Extrapolation Using Microphone Array
,”
J. Sound Vib.
,
330
(
24
), pp.
5852
5877
.
22.
Nelson
,
P. A.
, and
Yoon
,
S. H.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods—Part I: Conditioning of the Inverse Problem
,”
J. Sound Vib.
,
233
(
4
), pp.
639
664
.
23.
Li
,
S.
,
Xu
,
Z.
,
He
,
Y.
,
Zhang
,
Z.
, and
Song
,
S.
,
2016
, “
Functional Generalized Inverse Beamforming Based on the Double-Layer Microphone Array Applied to Separate the Sound Sources
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021013
.
24.
He
,
Y.
,
Liu
,
C.
,
Xu
,
Z.
,
Zhang
,
Z.
, and
Li
,
S.
,
2017
, “
Application of Inverse Patch Transfer Functions Method With Wideband Holography Algorithm to Sparsely Distributed Sources Identification
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011008
.
25.
Padois
,
T.
,
Gauthier
,
P. A.
, and
Berry
,
A.
,
2014
, “
Inverse Problem With Beamforming Regularization Matrix Applied to Sound Source Localization in Closed Wind-Tunnel Using Microphone Array
,”
J. Sound Vib.
,
333
(
25
), pp.
6858
6868
.
26.
Choi
,
H. G.
,
Thite
,
A. N.
, and
Thompson
,
D. J.
,
2007
, “
Comparison of Methods for Parameter Selection in Tikhonov Regularization With Application to Inverse Force Determination
,”
J. Sound Vib.
,
304
(
3–5
), pp.
894
917
.
27.
Fei
,
Z. Z.
, and
Si
,
C.
,
2015
, “
Modified Algorithm of the Inverse Problem Based Regularized Beamforming
,”
Chin. J. Sci. Instrum.
,
36
(
2015
), pp.
1752
1758
.
28.
Amiet
,
R.
,
1975
, “
Correction of Open Jet Wind Tunnel Measurements for Shear Layer Refraction
,”
AIAA
Paper No. 75-532.
29.
Bahr
,
C.
,
Zawodny
,
N.
,
Yardibi
,
T.
,
Liu
,
F.
,
Wetzel
,
D.
,
Bertolucci
,
B.
, and
Cattafesta
,
L.
,
2010
, “
Shear Layer Correction Validation Using a Non-Intrusive Acoustic Point Source
,”
AIAA
Paper No. 2010-3735
.
30.
Koop
,
L.
,
Ehrenfried
,
K.
, and
Kroeber
,
S.
,
2005
, “
Investigation of the Systematic Phase Mismatch in Microphone-Array Analysis
,”
AIAA
Paper No. 2005-2962
.
31.
Padois
,
T.
,
Prax
,
C.
, and
Valeau
,
V.
,
2013
, “
Numerical Validation of Shear Flow Corrections for Beamforming Acoustic Source Localisation in Open Wind-Tunnels
,”
Appl. Acoust.
,
74
(
4
), pp.
591
601
.
32.
Wei
,
L.
,
Li
,
M.
,
Yang
,
D.
,
Niu
,
F.
, and
Zeng
,
W.
,
2017
, “
Reconstruction of Sound Source Signal by Analytical Passive TR in the Environment With Airflow
,”
J. Sound Vib.
,
392
, pp.
77
90
.
33.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
,
2006
, “
A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays
,”
J. Sound Vib.
,
294
(
4–5
), pp.
856
879
.
You do not currently have access to this content.