Reciprocity is a property of linear, time-invariant systems whereby the energy transmission from a source to a receiver is unchanged after exchanging the source and receiver. Nonreciprocity violates this property and can be introduced to systems if time-reversal symmetry and/or parity symmetry is lost. While many studies have induced nonreciprocity by active means, i.e., odd-symmetric external biases or time variation of system properties, considerably less attention has been given to acoustical structures that passively break reciprocity. This study presents a lattice structure with strong stiffness nonlinearities, internal scale hierarchy, and asymmetry that breaks acoustic reciprocity. Macroscopically, the structure exhibits periodicity yet asymmetry exists in its unit cell design. A theoretical study, supported by experimental validation, of a two-scale unit cell has revealed that reciprocity is broken locally, i.e., within a single unit cell of the lattice. In this work, global breaking of reciprocity in the entire lattice structure is theoretically analyzed by studying wave propagation in the periodic arrangement of unit cells. Under both narrowband and broadband excitation, the structure exhibits highly asymmetrical wave propagation, and hence a global breaking of acoustic reciprocity. Interpreting the numerical results for varying impulse amplitude, as well as varying harmonic forcing amplitude and frequency/wavenumber, provides strong evidence that transient resonant capture is the driving force behind the global breaking of reciprocity in the periodic structure. In a companion work, some of the theoretical results presented herein are experimentally validated with a lattice composed of two-scale unit cells under impulsive excitation.

References

1.
Courant
,
R.
, and
Hilbert
,
D.
,
1989
,
Methods of Mathematical Physics
,
Wiley-VCH, Weinheim
,
Germany
.
2.
Casimir
,
H. B. G.
,
1945
, “
On Onsager's Principle of Microscopic Reversibility
,”
Rev. Mod. Phys.
,
17
(
2–3
), pp.
343
350
.
3.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.
4.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. II
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.
5.
Fleury
,
R.
,
Sounas
,
D.
,
Haberman
,
M. R.
, and
Alu
,
A.
,
2015
, “
Nonreciprocal Acoustics
,”
Acoust. Today
,
11
, pp.
14
21
.
6.
Arntzenius
,
F.
, and
Greaves
,
H.
,
2009
, “
Time Reversal in Classical Electromagnetism
,”
Br. J. Philos. Sci.
,
60
(
3
), pp.
557
584
.
7.
Kittel
,
C.
,
1958
, “
Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic Crystals
,”
Phys. Rev.
,
110
(
4
), pp.
836
841
.
8.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alu
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.
9.
Quan
,
L.
,
Sounas
,
D.
, and
Alu
,
A.
,
2017
, “
Non-reciprocal Sound Propagation in Zero-Index Metamaterials
,”
J. Acoust. Soc. Am.
,
141
(
5
), pp.
3698
3698
.
10.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
11.
Nassar
,
H.
,
Xu
,
X. C.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2017
, “
Modulated Phononic Crystals: Non-Reciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
12.
Attarzadeh
,
M. A.
, and
Nouh
,
M.
,
2018
, “
Non-Reciprocal Elastic Wave Propagation in 2D Phononic Membranes With Spatiotemporally Varying Material Properties
,”
J. Sound Vib.
422
, pp.
264
277
.
13.
Seif
,
A.
,
DeGottardi
,
W.
,
Esfarjani
,
K.
, and
Hafezi
,
M.
,
2018
, “
Thermal Management and Non-Reciprocal Control of Phonon Flow via Optomechanics
,”
Nat. Commun.
,
9
(
1
), p.
1207
.
14.
Croënne
,
C.
,
Vasseur
,
J. O.
,
Matar
,
O. B.
,
Ponge
,
M.-F.
,
Deymeir
,
P. A.
,
Hladky-Hennion
,
A.-C.
, and
Dubus
,
B.
,
2017
, “
Brillouin Scattering-Like Effect and Non-Reciprocal Propagation of Elastic Waves due to Spatio-Temporal Modulation of Electrical Boundary Conditions in Piezoelectric Media
,”
Appl. Phys. Lett.
,
110
(
6
), p.
061901
.
15.
Ansari
,
M. H.
,
Attarzadeh
,
M. A.
,
Nouh
,
M.
, and
Karami
,
M. A.
,
2018
, “
Application of Magnetoelastic Materials in Spatiotemporally Modulated Phononic Crystals for Nonreciprocal Wave Propagation
,”
Smart Mater. Struct.
,
27
(
1
), p.
015030
.
16.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
.
17.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J.-C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
.
18.
Luo
,
B.
,
Gao
,
S.
,
Liu
,
J.
,
Mao
,
Y.
,
Li
,
Y.
, and
Liu
,
X.
,
2018
, “
Non-Reciprocal Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
AIP Adv.
,
8
(
1
), p.
015113
.
19.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
.
20.
Wu
,
Z.
, and
Wang
,
K. W.
,
2017
, “
A Metastable Modular Structural System for Adaptive Nonreciprocal Wave Propagation
,”
Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
,
Portland, OR
,
Apr. 11, 2017
, p.
1016412
.
21.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Li
,
S.
,
Leamy
,
M.
, and
Vakakis
,
A. F.
,
2018
, “
Nonreciprocity in the Dynamics of Coupled Oscillators With Nonlinearity, Asymmetry, and Scale Hierarchy
,”
Phys. Rev. E
,
97
(
1
), p.
012219
.
22.
Bunyan
,
J.
,
Moore
,
K. J.
,
Mojahed
,
A.
,
Fronk
,
M. D.
,
Leamy
,
M.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2018
, “
Acoustic Nonreciprocity in a Lattice Incorporating Nonlinearity, Asymmetry, and Internal Scale Hierarchy: Experimental Study
,”
Phys. Rev. E
,
97
(
5
), p.
052211
.
23.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Bergman
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Al-Shudeifat
,
M.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
, and
Vakakis
,
A. F.
,
2014
, “
Realization of a Strongly Nonlinear Vibration-Mitigation Device Using Elastomeric Bumpers
,”
J. Eng. Mech.
,
140
(
5
), p.
04014009
.
24.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
.
25.
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2017
, “
Response Attenuation in a Large-Scale Structure Subjected to Blast Excitation Utilizing a System of Essentially Nonlinear Vibration Absorbers
,”
J. Sound Vib.
,
389
, pp.
52
72
.
26.
Kittel
,
C.
,
1996
,
Introduction to Solid State Physics
, 7th ed.,
John Wiley and Sons
,
New York
.
27.
Kim
,
E.
,
Li
,
F.
,
Chong
,
C.
,
Theocharis
,
G.
,
Yang
,
J.
, and
Kevrekidis
,
P. G.
,
2015
, “
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
,”
Phys. Rev. Lett.
,
114
(
11
), p.
118002
.
28.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
.
29.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.
You do not currently have access to this content.