Abstract

In this paper, the idea of an axially moving time-dependent beam model is briefly introduced. The nonlinear response of an axially moving beam is investigated. The effects of a time and spatial dependent tension depending on the external forces at the boundary and a tension dependent speed are highlighted, which gives a new model to study the parametric vibration of axially moving structures. This paper focuses on simultaneous resonant cases that are the principal parametric resonance of first mode and internal resonance of the first two modes. In general, the method of multiple scales can study nonlinear vibration of axially moving structures with homogeneous boundary conditions. Taking Kelvin viscoelastic constitutive relation into account, the inhomogeneous boundary conditions make the solvability conditions fail, which is also one of the highlights of this paper. In order to resolve this problem, the technique of the modified solvability conditions is employed. The influence of some parameters, such as material’s viscoelastic coefficients, viscous damping coefficients, and the axial tension fluctuation amplitudes, on the steady-state vibration responses is demonstrated by some numerical examples. Furthermore, the approximate analytical results are verified by using the differential quadrature method (DQM).

References

1.
Miranker
,
W. L.
,
1960
, “
The Wave Equation in a Medium in Motion
,”
IBM J. Res. Dev.
,
4
(
1
), pp.
36
42
. 10.1147/rd.41.0036
2.
Mote
,
C. D.
, Jr.
,
1968
, “
Parametric Excitation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
171
172
. 10.1115/1.3601138
3.
Fung
,
R. F.
,
Huang
,
J. S.
, and
Yeh
,
J. Y.
,
1998
, “
Nonlinear Dynamic Stability of a Moving String by Hamiltonian Formulation
,”
Comput. Struct.
,
66
(
5
), pp.
597
612
. 10.1016/S0045-7949(97)00104-1
4.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Nonlinear Vibration of Parametrically Excited Moving Belts, Part I: Dynamic Response
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
396
402
. 10.1115/1.2791062
5.
Liu
,
Z. S.
, and
Huang
,
C.
,
2002
, “
Evaluation of the Parametric Instability of an Axially Translating Media Using a Variational Principle
,”
J. Sound Vib.
,
257
(
5
), pp.
985
995
. 10.1006/jsvi.2002.5031
6.
Zhang
,
W.
,
Wen
,
H. B.
, and
Yao
,
M. H.
,
2004
, “
Periodic and Chaotic Oscillation of a Parametrically Excited Viscoelastic Moving Belt With 1:3 Internal Resonance
,”
Acta Mech. Sin.
,
36
(
4
), pp.
443
454
.
7.
Marynowski
,
K.
,
2004
, “
Non-Linear Vibrations of an Axially Moving Viscoelastic Web With Time-Dependent Tension
,”
Chaos Soliton. Fract.
,
21
(
2
), pp.
480
490
. 10.1016/j.chaos.2003.12.020
8.
Marynowski
,
K.
,
2008
, “
Non-Linear Vibrations of the Axially Moving Paper Web
,”
J. Theor. Appl. Mech.
,
46
(
3
), pp.
565
580
.
9.
Marynowski
,
K.
, and
Kapitaniak
,
T.
,
2007
, “
Zener Internal Damping in Modelling of Axially Moving Viscoelastic Beam With Time-Dependent Tension
,”
Int. J. NonLinear Mech.
,
42
(
1
), pp.
118
131
. 10.1016/j.ijnonlinmec.2006.09.006
10.
Li
,
Y. G.
,
2014
, “
Dynamic Stability of an Axially Moving Yarn With Time-Dependent Tension
,”
Adv. Mater. Res.
,
900
, pp.
753
756
. 10.4028/www.scientific.net/AMR.900.753
11.
Pellicano
,
F.
,
Fregolent
,
A.
,
Bertuzzi
,
A.
, and
Vestroni
,
F.
,
2001
, “
Primary and Parametric Non-Linear Resonances of a Power Transmission Belt: Experimental and Theoretical Analysis
,”
J. Sound Vib.
,
244
(
4
), pp.
669
684
. 10.1006/jsvi.2000.3488
12.
Pellicano
,
F.
,
Catellani
,
G.
, and
Fregolent
,
A.
,
2004
, “
Parametric Instability of Belts: Theory and Experiments
,”
Comput. Struct.
,
82
(
1
), pp.
81
91
. 10.1016/j.compstruc.2003.07.004
13.
Pellicano
,
F.
,
2005
, “
On the Dynamic Properties of Axially Moving Systems
,”
J. Sound Vib.
,
281
(
3
), pp.
593
609
. 10.1016/j.jsv.2004.01.029
14.
Sun
,
J. L.
,
Yan
,
P.
, and
Liu
,
H. M.
,
2010
, “
Non-Linear Vibration and Stability of Moving Strip With Time-Dependent Tension in Rolling Process
,”
J. Iron Steel Res. Int.
,
17
(
6
), pp.
11
15
. 10.1016/S1006-706X(10)60106-9
15.
Mockensturm
,
E. M.
, and
Guo
,
J.
,
2005
, “
Nonlinear Vibration of Parametrically Excited, Viscoelastic, Axially Moving Strings
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
374
380
. 10.1115/1.1827248
16.
Parker
,
R. G.
, and
Lin
,
Y.
,
2001
, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
49
57
. 10.1115/1.1343914
17.
Lv
,
H.
,
Li
,
Y.
,
Li
,
L.
, and
Liu
,
Q.
,
2014
, “
Transverse Vibration of Viscoelastic Sandwich Beam With Time-Dependent Axial Tension and Axially Varying Moving Velocity
,”
Appl. Math. Modell.
,
38
(
9–10
), pp.
2558
2585
. 10.1016/j.apm.2013.10.055
18.
Chubachi
,
T.
,
1958
, “
Lateral Vibration of Axially Moving Wire or Belt Form Materials
,”
Bull. JSME
,
1
(
1
), pp.
24
29
. 10.1299/jsme1958.1.24
19.
Mote
,
C. D
., Jr.
,
1965
, “
A Study of Band Saw Vibrations
,”
J. Franklin Inst.
,
279
(
6
), pp.
430
444
. 10.1016/0016-0032(65)90273-5
20.
Abrate
,
S.
,
1992
, “
Vibrations of Belts and Belt Drives
,”
Mech. Mach. Theory
,
27
(
6
), pp.
645
659
. 10.1016/0094-114X(92)90064-O
21.
Al-Jawi
,
A. A. N.
,
Pierre
,
C.
, and
Ulsoy
,
A. G.
,
1995
, “
Vibration Localization in Dual-Span, Axially Moving Beams, Part I: Formulation and Results
,”
J. Sound Vib.
,
179
(
2
), pp.
243
266
. 10.1006/jsvi.1995.0016
22.
Kim
,
K. S.
, and
Lee
,
M. J.
,
1999
, “
Analysis of the Non-Linear Vibration Characteristics of a Belt-Driven System
,”
J. Sound Vib.
,
223
(
5
), pp.
723
740
. 10.1006/jsvi.1998.2159
23.
Pakdemirli
,
M.
,
Ulsoy
,
A. G.
, and
Ceranoglu
,
A.
,
1994
, “
Transverse Vibration of an Axially Accelerating String
,”
J. Sound Vib.
,
196
(
2
), pp.
179
196
. 10.1006/jsvi.1994.1012
24.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
(
5
), pp.
815
832
. 10.1006/jsvi.1996.0935
25.
Chung
,
J.
,
Han
,
C. S.
, and
Yi
,
K.
,
2001
, “
Vibration of an Axially Moving String With Geometric Non-Linearity and Translating Acceleration
,”
J. Sound Vib.
,
240
(
4
), pp.
733
746
. 10.1006/jsvi.2000.3241
26.
Shin
,
C.
,
Chung
,
J.
, and
Yoo
,
H. H.
,
2006
, “
Dynamic Responses of the In-Plane and Out-Of-Plane Vibrations for an Axially Moving Membrane
,”
J. Sound Vib.
,
297
(
3
), pp.
794
809
. 10.1016/j.jsv.2006.04.031
27.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
,
1974
, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
,
297
(
3
), pp.
201
220
. 10.1016/0016-0032(74)90104-5
28.
Elmaraghy
,
R.
, and
Tabarrok
,
B.
,
1975
, “
On the Dynamic Stability of an Axially Oscillating Beam
,”
J. Franklin Inst.
,
300
(
1
), pp.
25
39
. 10.1016/0016-0032(75)90185-4
29.
Lee
,
H. P.
,
1993
, “
Dynamics of a Beam Moving Over Multiple Supports
,”
Int. J. Solids Struct.
,
30
(
2
), pp.
199
209
. 10.1016/0020-7683(93)90060-K
30.
Sreeram
,
T. R.
, and
Sivaneri
,
N. T.
,
1998
, “
FE-Analysis of a Moving Beam Using Lagrangian Multiplier Method
,”
Int. J. Solids Struct.
,
35
(
28–29
), pp.
3675
3694
. 10.1016/S0020-7683(97)00230-8
31.
Zhu
,
W. D.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media With an Arbitrarily Varying Length
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
295
304
. 10.1115/1.1303003
32.
Zhu
,
W. D.
,
Ni
,
J.
, and
Huang
,
J.
,
2001
, “
Active Control of Translating Media With Arbitrarily Varying Length
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
347
358
. 10.1115/1.1375809
33.
Zhu
,
W. D.
, and
Teppo
,
L. J.
,
2003
, “
Design and Analysis of a Scaled Model of a High-Rise, High-Speed Elevator
,”
J. Sound Vib.
,
264
(
3
), pp.
707
731
. 10.1016/S0022-460X(02)01218-X
34.
Ngo
,
Q. H.
,
Hong
,
K. S.
, and
Jung
,
I. H.
,
2009
, “
Adaptive Control of an Axially Moving System
,”
J. Mech. Sci. Technol.
,
23
(
11
), pp.
3071
3078
. 10.1007/s12206-009-0912-4
35.
Yang
,
K. J.
,
Hong
,
K. S.
, and
Matsuno
,
F.
,
2005
, “
Boundary Control of a Translating Tensioned Beam With Varying Speed
,”
IEEE-ASME Trans. Mechatron.
,
10
(
5
), pp.
594
597
. 10.1109/TMECH.2005.856107
36.
Yang
,
K. J.
,
Hong
,
K. S.
, and
Matsuno
,
F.
,
2005
, “
Energy-Based Control of Axially Translating Beams: Varying Tension, Varying Speed, and Disturbance Adaptation
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
1045
1054
. 10.1109/TCST.2005.854368
37.
Chen
,
L. Q.
, and
Tang
,
Y. Q.
,
2011
, “
Combination and Principal Parametric Resonances of Axially Accelerating Viscoelastic Beams: Recognition of Longitudinally Varying Tensions
,”
J. Sound Vib.
,
330
(
23
), pp.
5598
5614
. 10.1016/j.jsv.2011.07.012
38.
Chen
,
L. Q.
, and
Tang
,
Y. Q.
,
2012
, “
Parametric Stability of Axially Accelerating Viscoelastic Beams With the Recognition of Longitudinally Varying Tensions
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011008
. 10.1115/1.4004672
39.
Chen
,
L. Q.
,
Tang
,
Y. Q.
, and
Zu
,
J. W.
,
2014
, “
Nonlinear Transverse Vibration of Axially Accelerating Strings With Exact Internal Resonances and Longitudinally Varying Tensions
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1443
1468
. 10.1007/s11071-013-1220-1
40.
Ding
,
H.
,
Yan
,
Q. Y.
, and
Zu
,
J. W.
,
2014
, “
Chaotic Dynamics of an Axially Accelerating Viscoelastic Beam in the Supercritical Regime
,”
Int. J. Bifurcat Chaos
,
24
(
5
), p.
1450062
. 10.1142/S021812741450062X
41.
Tang
,
Y. Q.
,
Zhang
,
D. B.
, and
Gao
,
J. M.
,
2016
, “
Parametric and Internal Resonance of Axially Accelerating Viscoelastic Beams With the Recognition of Longitudinally Varying Tensions
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
401
418
. 10.1007/s11071-015-2336-2
42.
Tang
,
Y. Q.
,
Chen
,
L. Q.
,
Zhang
,
H. J.
, and
Yang
,
S. P.
,
2013
, “
Stability of Axially Accelerating Viscoelastic Timoshenko Beams: Recognition of Longitudinally Varying Tensions
,”
Mech. Mach. Theory
,
62
(
4
), pp.
31
50
. 10.1016/j.mechmachtheory.2012.11.007
43.
Yan
,
Q. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2014
, “
Periodic Responses and Chaotic Behaviors of an Axially Accelerating Viscoelastic Timoshenko Beam
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1577
1591
. 10.1007/s11071-014-1535-6
44.
Tang
,
Y. Q.
,
Zhang
,
D. B.
,
Rui
,
M. H.
,
Wang
,
X.
, and
Zhu
,
D. C.
,
2016
, “
Dynamic Stability of Axially Accelerating Viscoelastic Plates With Longitudinally Varying Tensions
,”
Appl. Math. Mech.
,
37
(
12
), pp.
1647
1668
. 10.1007/s10483-016-2146-8
45.
Huang
,
J. L.
,
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), pp.
021010
. 10.1115/1.4035135
46.
Chen
,
L. Q.
, and
Zu
,
J. W.
,
2008
, “
Solvability Condition in Multi-Scale Analysis of Gyroscopic Continua
,”
J. Sound Vib.
,
309
(
1
), pp.
338
342
. 10.1016/j.jsv.2007.06.003
47.
Bellman
,
R. E.
, and
Casti
,
J.
,
1971
, “
Differential Quadrature and Long-Term Integration
,”
J. Math. Anal. Appl.
,
34
(
2
), pp.
235
238
. 10.1016/0022-247X(71)90110-7
48.
Bellman
,
R. E.
,
Kasher
,
B. G.
, and
Casti
,
J.
,
1972
, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
10
(
1
), pp.
40
52
. 10.1016/0021-9991(72)90089-7
49.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
The Differential Quadrature Method in Computational Mechanics: A Review
,”
ASME Appl. Mech. Rev.
,
49
(
1
), pp.
1
28
. 10.1115/1.3101882
You do not currently have access to this content.