Abstract

The so-called locally resonant acoustic metamaterials (LRAMs) are a new kind of artificially engineered materials capable of attenuating acoustic waves. As the name suggests, this phenomenon occurs in the vicinity of internal frequencies of the material structure and can give rise to acoustic bandgaps. One possible way to achieve this is by considering periodic arrangements of a certain topology (unit cell), smaller in size than the characteristic wavelength. In this context, a computational model based on a homogenization framework has been developed from which one can obtain the aforementioned resonance frequencies for a given LRAM unit cell design in the sub-wavelength regime, which is suitable for low-frequency applications. Aiming at validating both the proposed numerical model and the local resonance phenomena responsible for the attenuation capabilities of such materials, a 3D-printed prototype consisting of a plate with a well selected LRAM unit cell design has been built and its acoustic response to normal incident waves in the range between 500 and 2000 Hz has been tested in an impedance tube. The results demonstrate the attenuating capabilities of the proposed design in the targeted frequency range for normal incident sound pressure waves and also establish the proposed formulation as the fundamental base for the computational design of 3D-printed LRAM-based structures.

References

1.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer Science & Business Media
,
New York
.
2.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
3.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
4.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alu
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
, p.
16001
. 10.1038/natrevmats.2016.1
5.
Sheng
,
P.
,
Zhang
,
X.
,
Liu
,
Z.
, and
Chan
,
C. T.
,
2003
, “
Locally Resonant Sonic Materials
,”
Phys. B: Condens. Matter
,
338
(
1–4
), pp.
201
205
. 10.1016/S0921-4526(03)00487-3
6.
Ho
,
K. M.
,
Yang
,
Z.
,
Zhang
,
X.
, and
Sheng
,
P.
,
2005
, “
Measurements of Sound Transmission Through Panels of Locally Resonant Materials Between Impedance Tubes
,”
Appl. Acoust.
,
66
(
7
), pp.
751
765
. 10.1016/j.apacoust.2004.11.005
7.
Calius
,
E. P.
,
Bremaud
,
X.
,
Smith
,
B.
, and
Hall
,
A.
,
2009
, “
Negative Mass Sound Shielding Structures: Early Results
,”
Phys. Status Solidi (b)
,
246
(
9
), pp.
2089
2097
. 10.1002/pssb.200982040
8.
Wester
,
E. C.
,
Brémaud
,
X.
, and
Smith
,
B.
,
2009
, “
Meta-Material Sound Insulation
,”
Build. Acoust.
,
16
(
1
), pp.
21
30
. 10.1260/135101009788066555
9.
Wang
,
G.
,
Wen
,
X.
,
Wen
,
J.
,
Shao
,
L.
, and
Liu
,
Y.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals With Binary Structures
,”
Phys. Rev. Lett.
,
93
(
15
), p.
154302
. 10.1103/PhysRevLett.93.154302
10.
Boutin
,
C.
, and
Becot
,
F. X.
,
2015
, “
Theory and Experiments on Poro-Acoustics With Inner Resonators
,”
Wave Motion
,
54
, pp.
76
99
. 10.1016/j.wavemoti.2014.11.013
11.
Sainidou
,
R.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Vasseur
,
J.
,
2006
, “
Locally Resonant Phononic Crystals Made of Hollow Spheres or Cylinders
,”
Phys. Rev. B
,
73
(
2
), p.
024302
. 10.1103/PhysRevB.73.024302
12.
Khanolkar
,
A.
,
Wallen
,
S.
,
Abi Ghanem
,
M.
,
Jenks
,
J.
,
Vogel
,
N.
, and
Boechler
,
N.
,
2015
, “
A Self-Assembled Metamaterial for Lamb Waves
,”
Appl. Phys. Lett.
,
107
(
7
), p.
071903
. 10.1063/1.4928564
13.
Hiraiwa
,
M.
,
Ghanem
,
M. A.
,
Wallen
,
S. P.
,
Khanolkar
,
A.
,
Maznev
,
A. A.
, and
Boechler
,
N.
,
2016
, “
Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves
,”
Phys. Rev. Lett.
,
116
(
19
), p.
198001
. 10.1103/PhysRevLett.116.198001
14.
Yu
,
D.
,
Liu
,
Y.
,
Zhao
,
H.
,
Wang
,
G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
(
6
), p.
064301
. 10.1103/PhysRevB.73.064301
15.
Wu
,
T.-T.
,
Huang
,
Z.-G.
,
Tsai
,
T.-C.
, and
Wu
,
T.-C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
(
11
), p.
111902
. 10.1063/1.2970992
16.
Wang
,
K.
,
Zhou
,
J.
,
Cai
,
C.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2019
, “
Mathematical Modeling and Analysis of a Meta-Plate for Very Low-Frequency Band Gap
,”
Appl. Math. Model.
,
73
, pp.
581
597
. 10.1016/j.apm.2019.04.033
17.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
. 10.1103/PhysRevLett.101.204301
18.
Rupin
,
M.
,
Lemoult
,
F.
,
Lerosey
,
G.
, and
Roux
,
P.
,
2014
, “
Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves
,”
Phys. Rev. Lett.
,
112
(
23
), p.
234301
. 10.1103/PhysRevLett.112.234301
19.
Banerjee
,
A.
,
Das
,
R.
, and
Calius
,
E. P.
,
2017
, “
Frequency Graded 1d Metamaterials: A Study on the Attenuation Bands
,”
J. Appl. Phys.
,
122
(
7
), p.
075101
. 10.1063/1.4998446
20.
Liu
,
C.
, and
Reina
,
C.
,
2018
, “
Broadband Locally Resonant Metamaterials With Graded Hierarchical Architecture
,”
J. Appl. Phys.
,
123
(
9
), p.
095108
. 10.1063/1.5003264
21.
Celli
,
P.
,
Yousefzadeh
,
B.
,
Daraio
,
C.
, and
Gonella
,
S.
,
2019
, “
Bandgap Widening by Disorder in Rainbow Metamaterials
,”
Appl. Phys. Lett.
,
114
(
9
), p.
091903
. 10.1063/1.5081916
22.
Xiao
,
Y.
,
Mace
,
B. R.
,
Wen
,
J.
, and
Wen
,
X.
,
2011
, “
Formation and Coupling of Band Gaps in a Locally Resonant Elastic System Comprising a String With Attached Resonators
,”
Phys. Lett. A
,
375
(
12
), pp.
1485
1491
. 10.1016/j.physleta.2011.02.044
23.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
. 10.1115/1.4004592
24.
Moscatelli
,
M.
,
Ardito
,
R.
,
Driemeier
,
L.
, and
Comi
,
C.
,
2019
, “
Band-Gap Structure in Two-and Three-Dimensional Cellular Locally Resonant Materials
,”
J. Sound. Vib.
,
454
, pp.
73
84
. 10.1016/j.jsv.2019.04.027
25.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
465
(
2109
), pp.
2825
2848
. 10.1098/rspa.2008.0471
26.
Fokin
,
V.
,
Ambati
,
M.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. B
,
76
(
14
), p.
144302
. 10.1103/PhysRevB.76.144302
27.
Nemat-Nasser
,
S.
,
Willis
,
J. R.
,
Srivastava
,
A.
, and
Amirkhizi
,
A. V.
,
2011
, “
Homogenization of Periodic Elastic Composites and Locally Resonant Sonic Materials
,”
Phys. Rev. B
,
83
(
10
), p.
104103
. 10.1103/PhysRevB.83.104103
28.
Krushynska
,
A.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2014
, “
Towards Optimal Design of Locally Resonant Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
71
, pp.
179
196
. 10.1016/j.jmps.2014.07.004
29.
Sridhar
,
A.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G.
,
2016
, “
Homogenization of Locally Resonant Acoustic Metamaterials Towards an Emergent Enriched Continuum
,”
Comput. Mech.
,
57
(
3
), pp.
423
435
. 10.1007/s00466-015-1254-y
30.
Sridhar
,
A.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2017
, “
A Semi-Analytical Approach Towards Plane Wave Analysis of Local Resonance Metamaterials Using a Multiscale Enriched Continuum Description
,”
Int. J. Mech. Sci.
,
133
, pp.
188
198
. 10.1016/j.ijmecsci.2017.08.027
31.
Roca
,
D.
,
Lloberas-Valls
,
O.
,
Cante
,
J.
, and
Oliver
,
J.
,
2018
, “
A Computational Multiscale Homogenization Framework Accounting for Inertial Effects: Application to Acoustic Metamaterials Modelling
,”
Comp. Methods Appl. Mech. Eng.
,
330
, pp.
415
446
. 10.1016/j.cma.2017.10.025
32.
Roca
,
D.
,
Yago
,
D.
,
Cante
,
J.
,
Lloberas-Valls
,
O.
, and
Oliver
,
J.
,
2019
, “
Computational Design of Locally Resonant Acoustic Metamaterials
,”
Comp. Methods Appl. Mech. Eng.
,
345
, pp.
161
182
. 10.1016/j.cma.2018.10.037
33.
McGee
,
O.
,
Jiang
,
H.
,
Qian
,
F.
,
Jia
,
Z.
,
Wang
,
L.
,
Meng
,
H.
,
Chronopoulos
,
D.
,
Chen
,
Y.
, and
Zuo
,
L.
,
2019
, “
3d Printed Architected Hollow Sphere Foams With Low-Frequency Phononic Band Gaps
,”
Addit. Manuf.
,
30
, p.
100842
. 10.1016/j.addma.2019.100842
34.
Claeys
,
C.
,
Deckers
,
E.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2016
, “
A Lightweight Vibro-Acoustic Metamaterial Demonstrator: Numerical and Experimental Investigation
,”
Mech. Syst. Signal Process.
,
70
, pp.
853
880
. 10.1016/j.ymssp.2015.08.029
35.
Leblanc
,
A.
, and
Lavie
,
A.
,
2017
, “
Three-Dimensional-Printed Membrane-Type Acoustic Metamaterial for Low Frequency Sound Attenuation
,”
J. Acoust. Soc. Am.
,
141
(
6
), pp.
EL538
EL542
. 10.1121/1.4984623
36.
ASTM E1050-98
,
1998
,
Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency Analysis System
,
Standard, ASTM International
,
West Conshohocken, PA
.
37.
Xu
,
Z.
,
Wang
,
Y.
,
Wu
,
D.
,
Ananth
,
K. P.
, and
Bai
,
J.
,
2019
, “
The Process and Performance Comparison of Polyamide 12 Manufactured by Multi Jet Fusion and Selective Laser Sintering
,”
J. Manuf. Process.
,
47
, pp.
419
426
. 10.1016/j.jmapro.2019.07.014
You do not currently have access to this content.