Abstract

Vibration transmission through two homogenous isotropic plates, joined at a right angle to each other, is studied using a wave approach in the audible frequency range. In this study, a generalized mathematical model is developed for the right-angled joint using a spring and dashpot model, which represents welded, riveted, and bolted joints. The energy transfer for the spring-dashpot model is determined in terms of transmission and reflection efficiencies of the aforementioned joints. The effect of variation of stiffness and damping of the joints on the transmission and reflection efficiencies is studied for variation in the coupled plate thickness and density ratio. The transmission efficiency is used to theoretically determine the coupling loss factor (CLF), which is an important parameter of statistical energy analysis (SEA) models. It is observed that with an increase in the mass of the second plate, it acts as a blocking mass to energy transfer. Experiments were performed on two mild steel plates connected using weld, rivet, and bolt joints to determine the CLFs for the joints and to verify the theoretical model. The CLFs determined from experiments and predicted using the wave approach were compared with those determined from the power injection method (PIM).

References

1.
Leung
,
R. C. N.
, and
Pinnington
,
R. J.
,
1990
, “
Wave Propagations Through Right Angled Joints With Compliance—Flexural Incident Wave
,”
J. Sound Vib.
,
142
(
1
), pp.
31
48
. 10.1016/0022-460X(90)90581-J
2.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
,
1987
,
Structure-Borne Sound
,
Springer-Verlag, Berlin Heidelberg GmbH
,
Berlin
.
3.
Nilsson
,
A. C.
,
1977
, “
Attenuation of Structure-Borne Sound in Superstructures on Ships
,”
J. Sound Vib.
,
55
(
1
), pp.
71
91
. 10.1016/0022-460X(77)90584-3
4.
Guyader
,
J. L.
,
Boisson
,
C.
, and
Lesueur
,
C.
,
1982
, “
Energy Transmission in Finite Coupled Plates, Part I: Theory
,”
J. Sound Vib.
,
81
(
1
), pp.
81
92
. 10.1016/0022-460X(82)90178-X
5.
Cuschieri
,
J. M.
,
1990
, “
Structural Power-Flow Analysis Using a Mobility Approach of an L-Shaped Plate
,”
J. Acoust. Soc. Am.
,
87
(
3
), pp.
1159
1165
. 10.1121/1.398789
6.
McCollum
,
M. D.
, and
Cuschieri
,
J. M.
,
1990
, “
Thick Plate Bending Wave Transmission Using a Mobility Power Flow Approach
,”
J. Acoust. Soc. Am.
,
88
(
3
), pp.
1472
1479
. 10.1121/1.400303
7.
Cuschieri
,
J. M.
, and
McCollum
,
M. D.
,
1996
, “
In-Plane and Out-of-Plane Waves Power Transmission Through L-Plate Junction Using the Mobility Power Flow Approach
,”
J. Acoust. Soc. Am.
,
100
(
2
), pp.
857
870
. 10.1121/1.416246
8.
Farag
,
N. H.
, and
Pan
,
J.
,
1998
, “
On the Free and Forced Vibration of Single and Coupled Rectangular Plates
,”
J. Acoust. Soc. Am.
,
104
(
1
), pp.
204
216
. 10.1121/1.423270
9.
Beshara
,
M.
, and
Keane
,
A. J.
,
1998
, “
Vibrational Energy Flows Between Plates With Compliant and Dissipative Couplings
,”
J. Sound Vib.
,
213
(
3
), pp.
511
535
. 10.1006/jsvi.1998.1521
10.
Kessissoglou
,
N. J.
,
2004
, “
Power Transmission in L-Shaped Plates Including Flexural and In-Plane Vibration
,”
J. Acoust. Soc. Am.
,
115
(
3
), pp.
1157
1169
. 10.1121/1.1635415
11.
Craven
,
P. G.
, and
Gibbs
,
B. M.
,
1981
, “
Sound Transmission and Mode Coupling at Junctions of Thin Plates, Part I: Representation of the Problem
,”
J. Sound Vib.
,
77
(
3
), pp.
417
427
. 10.1016/S0022-460X(81)80177-0
12.
Pan
,
X.
, and
Hansen
,
C. H.
,
1995
, “
Active Control of Vibratory Power Transmission Along a Semi-Infinite Plate
,”
J. Sound Vib.
,
184
(
4
), pp.
585
610
. 10.1006/jsvi.1995.0335
13.
Pan
,
X.
, and
Hansen
,
C. H.
,
1993
, “
Effect of End Conditions on the Active Control of Beam Vibration
,”
J. Sound Vib.
,
168
(
3
), pp.
429
448
. 10.1006/jsvi.1993.1384
14.
Mees
,
P.
, and
Vermier
,
O.
,
1993
, “
Structure-Borne Sound Transmission at Elastically Connected Plates
,”
J. Sound Vib.
,
166
(
1
), pp.
55
76
. 10.1006/jsvi.1993.1283
15.
Zhao
,
X.
, and
Vlahopoulos
,
N.
,
2004
, “
A Basic Hybrid Finite Element Formulation for Mid-Frequency Analysis of Beams Connected at an Arbitrary Angle
,”
J. Sound Vib.
,
269
(
1–2
), pp.
135
164
. 10.1016/S0022-460X(03)00038-5
16.
He
,
K.
, and
Zhu
,
W. D.
,
2011
, “
Finite Element Modeling of Structures With L-Shaped Beams and Bolted Joints
,”
ASME J. Vib. Acoust.
,
133
(
1
), pp.
011011.5
011011.13
. 10.1115/1.4001840
17.
Mace
,
B. R.
, and
Shorter
,
P. J.
,
2000
, “
Energy Flow Models From Finite Element Analysis
,”
J. Sound Vib.
,
233
(
3
), pp.
369
389
. 10.1006/jsvi.1999.2812
18.
Santos
,
E. R. O.
,
Arruda
,
J. R. F.
, and
Dos Santos
,
J. M. C.
,
2008
, “
Modelling of Coupled Structural Systems by an Energy Spectral Element Method
,”
J. Sound Vib.
,
316
(
1–5
), pp.
1
24
. 10.1016/j.jsv.2008.02.039
19.
Arruda
,
J. R. F.
,
Gautier
,
F.
, and
Donadon
,
L. V.
,
2007
, “
Computing Reflection and Transmission Coefficients for Plate Reinforcement Beams
,”
J. Sound Vib.
,
307
(
3–5
), pp.
564
577
. 10.1016/j.jsv.2007.06.052
20.
Renno
,
J. M.
, and
Mace
,
B. R.
,
2013
, “
Calculation of Reflection and Transmission Coefficients of Joints Using a Hybrid Finite Element/Wave and Finite Element Approach
,”
J. Sound Vib.
,
332
(
9
), pp.
2149
2164
. 10.1016/j.jsv.2012.04.029
21.
Ungar
,
E. E.
,
1973
, “
The Status of Engineering Knowledge Concerning the Damping of Built-Up Structures
,”
J. Sound Vib.
,
26
(
1
), pp.
141
154
. 10.1016/S0022-460X(73)80210-X
22.
Ehnes
,
C. W.
,
2003
, “
Damping in Stiffener Welded Structures
,”
Ph.D. thesis
,
Naval Postgraduate School
,
Monterey, CA
.
23.
Singh
,
B. K.
, and
Nanda
,
B. K.
,
2010
, “
Damping Mechanism in Welded Structures
,”
World Acad. Sci. Eng. Technol.
,
68
, pp.
319
324
.
24.
Bournine
,
H.
,
Wagg
,
D. J.
, and
Neild
,
S. A.
,
2011
, “
Vibration Damping in Bolted Friction Beam-Columns
,”
J. Sound Vib.
,
330
(
8
), pp.
1665
1679
. 10.1016/j.jsv.2010.10.022
25.
Lyon
,
R. H.
, and
Dejong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
, 2nd ed.,
Butterworth-Heinemann
,
Boston, MA
.
26.
Bies
,
D. A.
, and
Hamid
,
S.
,
1980
, “
In Situ Determination of Loss and Coupling Loss Factors by the Power Injection Method
,”
J. Sound Vib.
,
70
(
2
), pp.
187
204
. 10.1016/0022-460X(80)90595-7
27.
Clarkson
,
B. L.
, and
Ranky
,
M. F.
,
1984
, “
On the Measurement of the Coupling Loss Factor of Structural Connections
,”
J. Sound Vib.
,
94
(
2
), pp.
249
261
. 10.1016/S0022-460X(84)80034-6
28.
Clarkson
,
B. L.
, and
Pope
,
R. J.
,
1981
, “
Experimental Determination of Modal Densities and Loss Factors of Flat Plates and Cylinders
,”
J. Sound Vib.
,
77
(
4
), pp.
535
549
. 10.1016/S0022-460X(81)80049-1
29.
Sun
,
J. C.
, and
Richards
,
E. J.
,
1985
, “
Prediction of Total Loss Factor of Structures I: Theory and Experiments
,”
J. Sound Vib.
,
103
(
1
), pp.
109
117
. 10.1016/0022-460X(85)90250-0
30.
Wester
,
E. C. N.
, and
Mace
,
B. R.
,
1996
, “
Statistical Energy Analysis of Two Edge-Coupled Rectangular Plates: Ensemble Averages
,”
J. Sound Vib.
,
193
(
4
), pp.
793
822
. 10.1006/jsvi.1996.0316
31.
Sun
,
J. C.
,
Lalor
,
N.
, and
Richards
,
E. J.
,
1987
, “
Power Flow and Energy Balance of Non-Conservatively Coupled Structures I: Theory
,”
J. Sound Vib.
,
112
(
2
), pp.
321
330
. 10.1016/S0022-460X(87)80199-2
32.
Sun
,
J. C.
,
Chow
,
L. C.
,
Lalor
,
N.
, and
Richards
,
E. J.
,
1987
, “
Power Flow and Energy Balance of Non-Conservatively Coupled Structures II: Experimental Verification of Theory
,”
J. Sound Vib.
,
112
(
2
), pp.
331
343
. 10.1016/S0022-460X(87)80200-6
33.
Bloss
,
B. C.
, and
Rao
,
M. D.
,
2005
, “
Estimation of Frequency-Averaged Loss Factors by the Power Injection and Impulse Response Decay Method
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
240
249
. 10.1121/1.1835512
34.
Manik
,
D. N.
,
1998
, “
A New Method for Determining Coupling Loss Factor for SEA
,”
J. Sound Vib.
,
211
(
3
), pp.
521
526
. 10.1006/jsvi.1997.1313
35.
Bosmans
,
I.
, and
Nightingale
,
R. T.
,
2001
, “
Modeling Vibrational Energy Transmission at Bolted Junctions Between Plate and Stiffening Rib
,”
J. Acoust. Soc. Am.
,
109
(
3
), pp.
999
1010
. 10.1121/1.1344162
36.
Bosmans
,
I.
, and
Vermeir
,
G.
,
1997
, “
Diffuse Transmission of Structure-Borne Sound at Periodic Junctions of Semi-Infinite Plates
,”
J. Acoust. Soc. Am.
,
101
(
6
), pp.
3443
3456
. 10.1121/1.418353
37.
Patil
,
V. H.
, and
Manik
,
D. N.
,
2015
, “
Determination of Coupling Loss Factor (CLF) for Right Angled Plates
,”
Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22)
,
Florence, Italy
,
July 12–16
, Vol.
4
, pp.
2858
2865
.
38.
Park
,
W. S.
,
Thompson
,
D. J.
, and
Ferguson
,
N. S.
,
2004
, “
The Influence of Modal Behavior on the Energy Transmission Between Two Coupled Plates
,”
J. Sound Vib.
,
276
(
3–5
), pp.
1019
1041
. 10.1016/j.jsv.2003.08.043
39.
Skeen
,
M. B.
, and
Kessissoglou
,
N. J.
,
2007
, “
An Investigation of Transmission Coefficients for Finite and Semi-Infinite Coupled Plate Structures
,”
J. Acoust. Soc. Am.
,
122
(
2
), pp.
814
822
. 10.1121/1.2747165
You do not currently have access to this content.