Abstract

Transient vibro-thermography for nondestructive evaluation and super-resolution imaging of material defects invariably employs nonlinear contact dynamics involving the ultrasonic actuator (horn) and the surface of the target structure. It produces nonlinear resonant modes of vibration in the target structural component. Vibration-induced heat generation is one phenomenon involved here. However, the contribution of nonlinear vibration on the thermal signature is poorly understood. In this study, we consider a metallic component with a thin-walled cavity as a representative sharp feature tuned to the main excitation frequency of the ultrasonic actuator. We have developed a mathematical model to simulate transient thermal signature of structural discontinuity/cavity/defect. The model incorporates a coupled thermo-viscoelastic heat generation process in the bulk material based on the Helmholtz free energy formulation. To capture the source of nonlinear resonant modes, we incorporate the stick-separation contact dynamics due to the ultrasonic horn and the target structural component. Commercial finite element simulation (comsol multiphysics) is used to quantitatively understand the nonlinear vibration response and the thermal transport behavior of the target structure with the cavity. The proposed model accounts for the effects of both the normal and the shear components of deformation contributing on heat generation and captures the nonlinear modal contribution on the heat flux map. The study shows how the geometric feature and material parameters produce an evolution of the nonlinear subsuper harmonics along with the primary harmonics tuned to the excitation frequency. Results obtained from numerical simulations are compared with the experimental results.

References

1.
Pye
,
C. J.
, and
Adams
,
R. D.
,
1981
, “
Heat Emission From Damaged Composite Materials and Its Use in Nondestructive Testing
,”
J. Phys. D Appl. Phys.
,
14
(
5
), pp.
927
941
. 10.1088/0022-3727/14/5/026
2.
Pye
,
C. J.
, and
Adams
,
R. D.
,
1981
, “
Detection of Damage in Fibre Reinforced Plastics Using Thermal Fields Generated During Resonant Vibration
,”
NDT Int.
,
14
(
3
), pp.
111
118
. 10.1016/0308-9126(81)90027-4
3.
Mignogna
,
R. B.
,
Green
,
R. E.
,
Duke
,
J. C.
,
Henneke
,
E. G.
, and
Reifsnider
,
K. L.
,
1981
, “
Thermographic Investigation of High-Power Ultrasonic Heating in Materials
,”
Ultrasonics
,
19
(
4
), pp.
159
163
. 10.1016/0041-624X(81)90095-0
4.
Favro
,
L. D.
,
Han
,
X.
,
Ouyang
,
Z.
,
Sun
,
G.
,
Sui
,
H.
, and
Thomas
,
R. L.
,
2000
, “
Infrared Imaging of Defects Heated by a Sonic Pulse
,”
Rev. Sci. Instrum.
,
71
(
6
), pp.
2418
2421
. 10.1063/1.1150630
5.
Holland
,
S. D.
,
Uhl
,
C.
,
Ouyang
,
Z.
,
Bantel
,
T.
,
Li
,
M.
,
Meeker
,
W. Q.
,
Lively
,
J.
,
Brasche
,
L.
, and
Eisenmann
,
D.
,
2011
, “
Quantifying the Vibrothermographic Effect
,”
NDT E Int.
,
44
(
8
), pp.
775
782
. 10.1016/j.ndteint.2011.07.006
6.
Favro
,
L. D.
,
Thomas
,
R. L.
,
Han
,
X.
,
Ouyang
,
Z.
,
Newaz
,
G.
, and
Gentile
,
D.
,
2001
, “
Sonic Infrared Imaging of Fatigue Cracks
,”
Int. J. Fatigue
,
23
, pp.
471
476
. 10.1016/S0142-1123(01)00151-7
7.
Busse
,
G.
,
Wu
,
D.
, and
Karpen
,
W.
,
1992
, “
Thermal Wave Imaging With Phase Sensitive Modulated Thermography
,”
J. Appl. Phys.
,
71
(
8
), pp.
3962
3965
. 10.1063/1.351366
8.
Zweschper
,
T.
,
Dillenz
,
A.
, and
Busse
,
G.
,
2001
, “
Ultrasound Lock-In Thermography—A Defect-Selective NDT Method for the Inspection of Aerospace Components
,”
Insight NDT Condition Monit
,
43
(
3
), pp.
173
179
.
9.
Han
,
X.
,
Favro
,
L. D.
,
Ouyang
,
Z.
, and
Thomas
,
R. L.
,
2002
, “
Recent Developments in Thermosonic Crack Detection
,”
AIP Conference Proceedings
,
Brunswick, ME
,
July 29–Aug. 3
, pp.
552
557
.
10.
Wu
,
D.
,
Zenzinger
,
G.
,
Karpen
,
W.
, and
Busse
,
G.
,
1996
, “
Nondestructive Inspection of Turbine Blades With Lock-In Thermography
,”
Mater. Sci. Forum
,
210–213
, pp.
289
294
. 10.4028/www.scientific.net/MSF.210-213.289
11.
Zweschper
,
T.
,
Dillenz
,
A.
,
Riegert
,
G.
,
Scherling
,
D.
, and
Busse
,
G.
,
2003
, “
Ultrasound Excited Thermography Using Frequency Modulated Elastic Waves
,”
Insight NDT Condition Monit.
,
45
(
3
), pp.
178
182
. 10.1784/insi.45.3.178.53162
12.
Rantala
,
J.
,
Wu
,
D.
, and
Busse
,
G.
,
1996
, “
Amplitude-Modulated Lock-In Vibrothermography for NDE of Polymers and Composites
,”
Res. Nondestruct. Eval.
,
7
(
4
), pp.
215
228
. 10.1080/09349849609409580
13.
Genest
,
A. F.
,
Mabrouki
,
M. F.
,
Ibarra-Castanedo
,
C.
,
Grenier
,
M.
,
Larbi
,
W. B.
,
Bendada
,
A. H.
, and
Maldague
,
X.
, “
Comparison of Thermography Techniques for Inspection of Fiber Metal Laminates
,”
18th Annual ASNT Research Symposium and Spring Conference
,
St. Louis, MO
,
Mar. 16–20
, pp.
50
54
.
14.
Farren
,
W. S.
, and
Taylor
,
G. I.
,
1925
, “
The Heat Developed During Plastic Extension of Metals
,”
Proc. R. Soc. A
,
107
(
743
), pp.
422
451
.
15.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
,
17
(
2–3
), pp.
135
145
. 10.1016/0167-6636(94)90054-X
16.
Rosakis
,
P.
,
Rosakis
,
A. J.
,
Ravichandran
,
G.
, and
Hodowany
,
J.
,
2000
, “
A Thermodynamic Internal Variable Model for the Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
581
607
. 10.1016/S0022-5096(99)00048-4
17.
Mabrouki
,
F.
,
Thomas
,
M.
,
Genest
,
M.
, and
Fahr
,
A.
,
2010
, “
Numerical Modeling of Vibrothermography Based on Plastic Deformation
,”
NDT E Int.
,
43
(
6
), pp.
476
483
. 10.1016/j.ndteint.2010.05.002
18.
Solodov
,
I.
,
Derusova
,
D.
, and
Rahammer
,
M.
,
2015
, “
Thermosonic Chladni Figures for Defect-Selective Imaging
,”
Ultrasonics
,
60
, pp.
1
5
. 10.1016/j.ultras.2015.02.007
19.
Kolappan Geetha
,
G.
, and
Roy Mahapatra
,
D.
,
2019
, “
Modeling and Simulation of Vibro-Thermography Including Nonlinear Contact Dynamics of Ultrasonic Actuator
,”
Ultrasonics
,
93
, pp.
81
92
. 10.1016/j.ultras.2018.11.001
20.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
2005
,
The Mechanics of Constitutive Modeling
,
Elsevier
,
New York
.
21.
Menard
,
K. P.
,
2008
,
Dynamic Mechanical Analysis: a Practical Introduction
,
CRC Press
,
Boca Raton, FL
.
22.
Roylance
,
D.
,
2001
,
Engineering Viscoelasticity
,
Department of Materials Science and Engineering–Massachusetts Institute of Technology
,
Cambridge, MA
.
23.
Zhang
,
C.-S.
,
Feng
,
F.-Z.
,
Min
,
Q.-X.
, and
Zhu
,
J.-Z.
,
2015
, “
Effect of Engagement Force on Vibration Characteristics and Frictional Heating in Sonic IR Imaging
,”
NDT E Int.
,
76
, pp.
52
60
. 10.1016/j.ndteint.2015.08.002
24.
Feng
,
F.
,
Zhang
,
C.
,
Min
,
Q.
, and
Wang
,
P.
,
2015
, “
Effect of Engagement Force on Vibration Characteristics in Sonic IR Imaging
,”
Ultrasonics
,
56
, pp.
473
476
. 10.1016/j.ultras.2014.09.013
25.
Han
,
X.
,
Zeng
,
Z.
,
Li
,
W.
,
Islam
,
M. S.
,
Lu
,
J.
,
Loggins
,
V.
,
Yitamben
,
E.
,
Favro
,
L. D.
,
Newaz
,
G.
, and
Thomas
,
R. L.
,
2004
, “
Acoustic Chaos for Enhanced Detectability of Cracks by Sonic Infrared Imaging
,”
J. Appl. Phys.
,
95
(
7
), pp.
3792
3797
. 10.1063/1.1652243
26.
Han
,
X.
,
Li
,
W.
,
Zeng
,
Z.
,
Favro
,
L. D.
, and
Thomas
,
R. L.
,
2002
, “
Acoustic Chaos and Sonic Infrared Imaging
,”
Appl. Phys. Lett.
,
81
(
17
), pp.
3188
3190
. 10.1063/1.1516240
27.
Han
,
X.
,
Loggins
,
V.
,
Zeng
,
Z.
,
Favro
,
L. D.
, and
Thomas
,
R. L.
,
2004
, “
Mechanical Model for the Generation of Acoustic Chaos in Sonic Infrared Imaging
,”
Appl. Phys. Lett.
,
85
(
8
), pp.
1332
1334
. 10.1063/1.1785285
28.
Zheng
,
K.
,
Zhang
,
H.
,
Zhang
,
S.
, and
Fan
,
L.
,
2006
, “
A Dynamical Model of Subharmonic Generation in Ultrasonic Infrared Thermography
,”
Ultrasonics
,
44
, pp.
e1343
e1347
. 10.1016/j.ultras.2006.05.166
29.
Song
,
Y.
, and
Han
,
X.
,
2012
, “
Further Study of Coupling Materials on Aluminum Sample Using Sonic IR
,”
AIP Conference Proceedings
, Vol.
1430
. No.
1.
,
Burlington, VT
,
July 17–22
, pp.
546
551
.
30.
Bathe
,
K.-J.
, and
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Prentice Hall
,
NJ
.
31.
Nag
,
A.
,
Roy Mahapatra
,
D.
,
Gopalakrishnan
,
S.
, and
Sankar
,
T. S.
,
2003
, “
A Spectral Finite Element With Embedded Delamination for Modeling of Wave Scattering in Composite Beams
,”
Compos. Sci. Technol.
,
63
(
15
), pp.
2187
2200
. 10.1016/S0266-3538(03)00176-3
32.
Geetha
,
G. K.
,
Roy Mahapatra
,
D.
,
Gopalakrishnan
,
S.
, and
Hanagud
,
S.
,
2016
, “
Laser Doppler Imaging of Delamination in a Composite T-Joint With Remotely Located Ultrasonic Actuators
,”
Compos. Struct.
,
147
, pp.
197
210
. 10.1016/j.compstruct.2016.03.039
33.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.