Abstract

This paper explores the addition of small stubs with anechoic terminations (termed herein “anechoic stubs”) as a means of damping and/or removing vibration modes from planar frame structures. Due to the difficulties associated with representing anechoic boundary conditions in more traditional analysis approaches (e.g., analytical, finite element, finite difference, and finite volume), the paper employs and further develops an exact wave-based approach, incorporating Timoshenko beams, in which ideal and non-ideal anechoic terminations are simply represented by a reflection matrix. Several numerically evaluated examples are presented documenting novel effects anechoic stubs have on the vibration modes of a two-story frame, such as eliminated, inserted, and exchanged mode shapes. Modal damping ratios are also computed as a function of the location and number of anechoic stubs, illustrating optimal locations and optimal reflection ratios as a function of mode number. Forced vibration studies are then carried out, demonstrating reduced, eliminated, and inserted resonance response.

References

1.
Akesson
,
B. A.
,
1976
, “
PFVIBAT—A Computer Program For Plane Frame Vibration Analysis by an Exact Method
,”
Int. J. Numer. Methods Eng.
,
10
(
6
), pp.
1221
1230
. 10.1002/nme.1620100603
2.
Gladwell
,
G.
,
1964
, “
The Vibration of Frames
,”
J. Sound Vib.
,
1
(
4
), pp.
402
425
. 10.1016/0022-460X(64)90056-2
3.
Lee
,
H. P.
, and
Ng
,
T. Y.
,
1994
, “
In-plane Vibration of Planar Frame Structures
,”
J. Sound Vib.
,
172
(
3
), pp.
420
427
. 10.1006/jsvi.1994.1185
4.
Mehmood
,
A.
,
2015
, “
Using Finite Element Method Vibration Analysis of Frames Structure Subjected to Moving Loads
,”
Int. J. Mech. Eng. Rob. Res.
,
4
(
1
), pp.
50
65
.
5.
Labib
,
A.
,
Kennedy
,
D.
, and
Featherston
,
C.
,
2014
, “
Free Vibration Analysis of Beams and Frames With Multiple Cracks for Damage Detection
,”
J. Sound Vib.
,
333
(
20
), pp.
4991
5003
. 10.1016/j.jsv.2014.05.015
6.
Banerjee
,
J.
, and
Ananthapuvirajah
,
A.
,
2018
, “
Free Vibration of Functionally Graded Beams and Frameworks Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
422
, pp.
34
47
. 10.1016/j.jsv.2018.02.010
7.
Mei
,
C.
, and
Mace
,
B. R.
,
2005
, “
Wave Reflection and Transmission in Timoshenko Beams and Wave Analysis of Timoshenko Beam Structures
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
382
394
. 10.1115/1.1924647
8.
Mei
,
C.
,
2010
, “
In-plane Vibrations of Classical Planar Frame Structures—An Exact Wave-Based Analytical Solution
,”
J. Vib. Control
,
16
(
9
), pp.
1265
1285
. 10.1177/1077546309339422
9.
Mei
,
C.
,
2012
, “
Wave Analysis of In-plane Vibrations of L-Shaped and Portal Planar Frame Structures
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021011
. 10.1115/1.4005014
10.
Mei
,
C.
,
2012
, “
Free Vibration Analysis of Classical Single-Story Multi-bay Planar Frames
,”
J. Vib. Control
,
19
(
13
), pp.
2022
2035
. 10.1177/1077546312455081
11.
Mei
,
C.
, and
Sha
,
H.
,
2014
, “
Analytical and Experimental Study of Vibrations in Simple Spatial Structures
,”
J. Vib. Control
,
22
(
17
), pp.
3711
3735
. 10.1177/1077546314565807
12.
Mei
,
C.
, and
Sha
,
H.
,
2015
, “
An Exact Analytical Approach for Free Vibration Analysis of Built-Up Space Frames
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031005
. 10.1115/1.4029380
13.
Craggs
,
A.
,
1977
, “
A Finite Element Method for Modelling Dissipative Mufflers With a Locally Reactive Lining
,”
J. Sound Vib.
,
54
(
2
), pp.
285
296
. 10.1016/0022-460X(77)90030-X
14.
Gerges
,
S. N. Y.
,
Jordan
,
R.
,
Thieme
,
F. A.
,
Coelho
,
J. L. B.
, and
Arenas
,
J. P.
,
2005
, “
Mufflers Modeling by Transfer Matrix Method and Experimental Verification
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
27
(
No. 2
), pp.
132
140
.
15.
Lai
,
P. C. C.
, and
Soedel
,
W.
,
1996
, “
On the Anechoic Termination Assumption When Modeling Exit Pipes
,”
Proceedings of the 1996 International Compressor Engineering Conference
,
West Lafayette, IN
,
July 23–26
, pp.
815
820
.
16.
Wu
,
T. W.
,
Zhang
,
P.
, and
Cheng
,
C. Y. R.
,
1998
, “
Boundary Element Analysis of Mufflers With an Improved Method for Deriving the Four-Pole Parameters
,”
J. Sound Vib.
,
217
(
4
), pp.
767
779
. 10.1006/jsvi.1998.1800
17.
Brennan
,
M.
,
1999
, “
Control of Flexural Waves on a Beam Using a Tunable Vibration Neutraliser
,”
J. Sound Vib.
,
222
(
3
), pp.
389
407
. 10.1006/jsvi.1998.2031
18.
Schwenk
,
A. E.
,
Sommerfeldt
,
S. D.
, and
Hayek
,
S. I.
,
1994
, “
Adaptive Control of Structural Intensity Associated With Bending Waves in a Beam
,”
J. Acoust. Soc. Am.
,
96
(
5
), pp.
2826
2835
. 10.1121/1.411288
19.
Wang
,
L.
, and
Walsh
,
S. J.
,
2006
, “
Measurement of Phase Accumulation in the Transfer Functions of Beams and Plates
,”
J. Sound Vib.
,
290
(
3–5
), pp.
763
784
. 10.1016/j.jsv.2005.04.032
20.
Deferrari
,
H. A.
,
Darby
,
R.
, and
Andrews
,
F.
,
1967
, “
Vibrational Displacement and Mode-Shape Measurement by a Laser Interferometer
,”
J. Acoust. Soc. Am.
,
42
(
5
), pp.
982
990
. 10.1121/1.1910707
21.
McCormick
,
C. A.
, and
Shepherd
,
M. R.
,
2020
, “
Design Optimization and Performance Comparison of Three Styles of One-Dimensional Acoustic Black Hole Vibration Absorbers
,”
J. Sound Vib.
,
470
, p.
115164
. 10.1016/j.jsv.2019.115164
22.
Denis
,
V.
,
Gautier
,
F.
,
Pelat
,
A.
, and
Poittevin
,
J.
,
2015
, “
Measurement and Modelling of the Reflection Coefficient of an Acoustic Black Hole Termination
,”
J. Sound Vib.
,
349
, pp.
67
79
. 10.1016/j.jsv.2015.03.043
23.
Georgiev
,
V.
,
Cuenca
,
J.
,
Gautier
,
F.
,
Simon
,
L.
, and
Krylov
,
V.
,
2011
, “
Damping of Structural Vibrations in Beams and Elliptical Plates Using the Acoustic Black Hole Effect
,”
J. Sound Vib.
,
330
(
11
), pp.
2497
2508
. 10.1016/j.jsv.2010.12.001
24.
Mace
,
B. R.
,
Rustighi
,
E.
,
Ferguson
,
N. S.
, and
Doherty
,
D.
,
2009
, “Active Control of Flexural Vibration: An Adaptive Anechoic Termination,”
Motion and Vibration Control
,
H.
Ulbrich
and
L.
Ginzinger
, eds., pp.
231
240
.
25.
Fujii
,
H.
, and
Ohtsuka
,
T.
,
1992
, “
Experiment of a Noncollocated Controller for Wave Cancellation
,”
J. Guid. Control Dyn.
,
15
(
3
), pp.
741
745
. 10.2514/3.20899
26.
Von Flotow
,
A.
, and
Schafer
,
B.
,
1986
, “
Wave-Absorbing Controllers for a Flexible Beam
,”
J. Guid. Control Dyn.
,
9
(
6
), pp.
673
680
. 10.2514/3.20163
27.
Rustighi
,
E.
,
Mace
,
B.
, and
Ferguson
,
N.
,
2011
, “
An Adaptive Anechoic Termination for Active Vibration Control
,”
J. Vib. Control
,
17
(
13
), pp.
2066
2078
. 10.1177/1077546311403788
28.
Ashley
,
H.
,
1984
, “
On Passive Damping Mechanisms in Large Space Structures
,”
J. Spacecraft Rockets
,
21
(
5
), pp.
448
455
. 10.2514/3.25679
29.
Hu
,
Q.
,
Li
,
J.
, and
Zhang
,
J.
,
2017
, “
Passivity Control With Practically Finite-Time Convergence for Large Space Structures
,”
Acta Astronaut.
,
131
, pp.
152
158
. 10.1016/j.actaastro.2016.11.008
30.
Liu
,
L.
,
Cao
,
D.
,
Huang
,
H.
,
Shao
,
C.
, and
Xu
,
Y.
,
2017
, “
Thermal-Structural Analysis for an Attitude Maneuvering Flexible Spacecraft Under Solar Radiation
,”
Int. J. Mech. Sci.
,
126
, pp.
161
170
. 10.1016/j.ijmecsci.2017.03.028
31.
Mei
,
C.
,
2008
, “
Wave Analysis of In-plane Vibrations of H- and T-Shaped Planar Frame Structures
,”
ASME J. Vib. Acoust.
,
130
(6), p.
061004
. 10.1115/1.2980373
32.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Soilds
,
Ohio State University Press
,
Columbus, OH
.
33.
Mace
,
B. R.
,
1997
, “
Wave Analysis of the T-Beam
,”
Proceedings of the 1997 International Congress on Noise Control Engineering
,
Budapest, Hungary
,
Aug. 25–27
, pp.
1569
1572
.
34.
Leamy
,
M. J.
,
2012
, “
Exact Wave-Based Bloch Analysis Procedure for Investigating Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Sound Vib.
,
331
(
7
), pp.
1580
1596
. 10.1016/j.jsv.2011.11.023
35.
Givoli
,
D.
,
1992
,
Numerical Methods for Problems in Infinite Domains
,
Elsevier Science Publishers B.V.
,
Amsterdam, The Netherlands
.
36.
Shen
,
J.
,
Wen
,
R.
,
Akbas
,
B.
,
Doran
,
B.
, and
Uckan
,
E.
,
2014
, “
Seismic Demand on Brace-Intersected Beams in Two-Story X-Braced Frames
,”
Eng. Struct.
,
76
, pp.
295
312
. 10.1016/j.engstruct.2014.07.022
You do not currently have access to this content.