Abstract

Signal denoising has been significantly explored in various engineering disciplines. In particular, structural health monitoring applications generally aim to detect weak anomaly responses (including acoustic emission (AE)) generated by incipient damage, which are easily buried in noise. Among various approaches, stochastic resonance (SR) has been widely adopted for weak signal detection. While many advancements have been focused on identifying useful information from the frequency domain by optimizing parameters in a post-processing environment to activate SR, it often requires detailed information about the original signal a priori, which is hardly assessed from signals overwhelmed by noise. This research presents a novel online signal denoising strategy by utilizing SR in a parallel array of bistable systems. The original noisy input with additionally applied noise is adaptively scaled, so that the total noise level matches the optimal level that is analytically predicted from a generalized model to robustly enhance signal denoising performance for a wide range of input amplitudes that are often not known in advance. Thus, without sophisticated post-processing procedures, the scaling factor is straightforwardly determined by the analytically estimated optimal noise level and the ambient noise level, which is one of the few quantities that can be reliably assessed from noisy signals in practice. Along with numerical investigations that demonstrate the operational principle and the effectiveness of the proposed strategy, experimental validation of denoising AE signals by employing a bistable Duffing circuit system exemplifies the promising potential of implementing the new approach for enhancing online signal denoising in practice.

References

1.
Farrar
,
C.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. Lond. A
,
365
(
1851
), pp.
303
315
.
2.
Grosse
,
C.
, and
Ohtsu
,
M.
, eds.,
2008
,
Acoustic Emission Testing
,
Springer-Verlag
,
Berlin
.
3.
Qin
,
Z.
,
Chen
,
L.
, and
Bao
,
X.
,
2012
, “
Wavelet Denoising Method for Improving Detection Performance of Distributed Vibration Sensor
,”
IEEE Photon. Technol. Lett.
,
24
(
7
), pp.
542
544
.
4.
Lei
,
Y.
,
He
,
Z.
,
Zi
,
Y.
, and
Hu
,
Q.
,
2007
, “
Fault Diagnosis of Rotating Machinery Based on Multiple ANFIS Combination With GAs
,”
Mech. Syst. Signal Process.
,
21
(
55
), pp.
2280
2294
.
5.
Benzi
,
R.
,
Sutera
,
A.
, and
Vulpiani
,
A.
,
1981
, “
The Mechanism of Stochastic Resonance
,”
J. Phys. A: Math. Gen.
,
14
(
11
), pp.
L453
L457
.
6.
Nicolis
,
C.
, and
Nicolis
,
G.
,
1981
, “
Stochastic Aspects of Climatic Transitions—Additive Fluctuations
,”
Tellus
,
33
(
3
), pp.
225
234
.
7.
McNamara
,
B.
,
Wiesenfeld
,
K.
, and
Roy
,
R.
,
1988
, “
Observation of Stochastic Resonance in a Ring Laser
,”
Phys. Rev. Lett.
,
60
(
25
), pp.
2626
2629
.
8.
Badzey
,
R.
, and
Mohanty
,
P.
,
2005
, “
Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance
,”
Nature
,
437
(
7061
), pp.
995
998
.
9.
Leonard
,
D.
, and
Reichl
,
L.
,
1994
, “
Stochastic Resonance in a Chemical-Reaction
,”
Phys. Rev. E
,
49
(
2
), pp.
1734
1737
.
10.
Yang
,
L.
,
Hou
,
Z.
, and
Xin
,
H.
,
1999
, “
Stochastic Resonance in the Absence and Presence of External Signals for a Chemical Reaction
,”
J. Chem. Phys.
,
110
(
7
), pp.
3591
3595
.
11.
Douglass
,
J.
,
Wilkens
,
L.
,
Pantazelou
,
E.
, and
Moss
,
F.
,
1993
, “
Noise Enhancement of Information Transfer in Crayfish Mechanoreceptors by Stochastic Resonance
,”
Nature
,
365
(
6444
), pp.
337
340
.
12.
Hänggi
,
P.
,
2002
, “
Stochastic Resonance in Biology How Noise Can Enhance Detection of Weak Signals and Help Improve Biological Information Processing
,”
ChemPhysChem
,
3
(
3
), pp.
285
290
.
13.
Valenti
,
D.
,
Fiasconaro
,
A.
, and
Spagnolo
,
B.
,
2004
, “
Stochastic Resonance and Noise Delayed Extinction in a Model of Two Competing Species
,”
Physica A
,
331
(
3
), pp.
477
486
.
14.
Kuperman
,
M.
, and
Zanette
,
D.
,
2002
, “
Stochastic Resonance in a Model of Opinion Formation on Small-World Networks
,”
26
(
3
), pp.
387
391
.
15.
Meyer
,
B.
,
2017
, “
Optimal Information Transfer and Stochastic Resonance in Collective Decision Making
,”
Swarm Intell.
,
11
(
2
), pp.
131
154
.
16.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.
17.
McNamara
,
B.
, and
Wiesenfeld
,
K.
,
1989
, “
Theory of Stochastic Resonance
,”
Phys. Rev. A
,
39
(
9
), pp.
4854
4869
.
18.
Collins
,
J.
,
Chow
,
C.
, and
Imhoff
,
T.
,
1995
, “
Stochastic Resonance Without Tuning
,”
Nature
,
376
(
6537
), pp.
236
238
.
19.
Mori
,
T.
, and
Kai
,
S.
,
2002
, “
Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves
,”
Phys. Rev. Lett.
,
88
(
21
), p.
218101
.
20.
Rallabandi
,
V.
, and
Roy
,
P.
,
2010
, “
Magnetic Resonance Image Enhancement Using Stochastic Resonance in Fourier Domain
,”
Magn. Reson. Imag.
,
28
(
9
), pp.
1361
1373
.
21.
Feng
,
X.
,
Liu
,
H.
,
Huang
,
N.
,
Wang
,
Z.
, and
Zhang
,
Y.
,
2019
, “
Reconstruction of Noisy Images Via Stochastic Resonance in Nematic Liquid Crystals
,”
Sci. Rep.
,
9
(
1
), pp.
1
9
.
22.
Qiao
,
Z.
,
Lei
,
Y.
, and
Li
,
N.
,
2019
, “
Applications of Stochastic Resonance to Machinery Fault Detection: A Review and Tutorial
,”
Mech. Syst. Signal Process.
,
122
, pp.
502
536
.
23.
Qin
,
Y.
,
Tao
,
Y.
,
He
,
Y.
, and
Tang
,
B.
,
2014
, “
Adaptive Bistable Stochastic Resonance and Its Application in Mechanical Fault Feature Extraction
,”
J. Sound Vib.
,
333
(
26
), pp.
7386
7400
.
24.
Qiao
,
Z.
,
Lei
,
Y.
,
Lin
,
J.
, and
Jia
,
F.
,
2017
, “
An Adaptive Unsaturated Bistable Stochastic Resonance Method and Its Application in Mechanical Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
84
, pp.
731
746
.
25.
Lai
,
Z.
, and
Leng
,
Y.
,
2016
, “
Weak-Signal Detection Based on the Stochastic Resonance of Bistable Duffing Oscillator and Its Application in Incipient Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
81
, pp.
60
74
.
26.
Lu
,
S.
,
Zheng
,
P.
,
Liu
,
Y.
,
Cao
,
Z.
,
Yang
,
H.
, and
Wang
,
Q.
,
2019
, “
Sound-Aided Vibration Weak Signal Enhancement for Bearing Fault Detection by Using Adaptive Stochastic Resonance
,”
J. Sound Vib.
,
449
, pp.
18
29
.
27.
Li
,
J.
,
Zhang
,
J.
,
Li
,
M.
, and
Zhang
,
Y.
,
2019
, “
A Novel Adaptive Stochastic Resonance Method Based on Coupled Bistable Systems and Its Application in Rolling Bearing Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
114
, pp.
128
145
.
28.
He
,
B.
,
Huang
,
Y.
,
Wang
,
D.
,
Yan
,
B.
, and
Dong
,
D.
,
2019
, “
A Parameter-Adaptive Stochastic Resonance Based on Whale Optimization Algorithm for Weak Signal Detection for Rotating Machinery
,”
Measurement
,
136
, pp.
658
667
.
29.
Wang
,
S.
,
Niu
,
P.
,
Guo
,
Y.
,
Wang
,
F.
,
Li
,
W.
,
Shi
,
H.
, and
Han
,
S.
,
2020
, “
Early Diagnosis of Bearing Faults Using Decomposition and Reconstruction Stochastic Resonance System
,”
Measurement
,
158
, p.
107709
.
30.
Fu
,
Y.
,
Kang
,
Y.
, and
Liu
,
R.
,
2020
, “
Novel Bearing Fault Diagnosis Algorithm Based on the Method of Moments for Stochastic Resonant Systems
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
10
.
31.
Dong
,
H.
,
Wang
,
H.
,
Shen
,
X.
, and
Jiang
,
Z.
,
2018
, “
Effects of Second-Order Matched Stochastic Resonance for Weak Signal Detection
,”
IEEE Access
,
6
, pp.
46505
46515
.
32.
Xu
,
B.
,
Duan
,
F.
,
Bao
,
R.
, and
Li
,
J.
,
2002
, “
Stochastic Resonance With Tuning System Parameters: The Application of Bistable Systems in Signal Processing
,”
Chaos Solitons Fractals
,
13
(
4
), pp.
633
644
.
33.
Xu
,
B.
,
Li
,
J.
, and
Zheng
,
J.
,
2003
, “
How to Tune the System Parameters to Realize Stochastic Resonance
,”
J. Phys. A: Math. Gen.
,
36
(
48
), pp.
11969
11980
.
34.
Collins
,
J.
,
Chow
,
C.
,
Capela
,
A.
, and
Imhoff
,
T.
,
1996
, “
Aperiodic Stochastic Resonance
,”
Phys. Rev. E
,
54
(
5
), pp.
5575
5584
.
35.
Stocks
,
N.
,
2000
, “
Suprathreshold Stochastic Resonance in Multilevel Threshold Systems
,”
Phys. Rev. Lett.
,
84
(
11
), pp.
2310
2313
.
36.
Hellier
,
C.
,
2001
,
Handbook of Nondestructive Evaluation
,
McGraw-Hill Professional
,
New York
.
37.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
Robust Sensing Methodology for Detecting Change With Bistable Circuitry Dynamics Tailoring
,”
Appl. Phys. Lett.
,
102
(
20
), p.
203506
.
38.
Szemplińska-Stupnicka
,
W.
, and
Rudowski
,
J.
,
1993
, “
Steady States in the Twin-Well Potential Oscillator: Computer Simulations and Approximate Analytical Studies
,”
Chaos
,
3
(
3
), pp.
375
385
.
39.
Kim
,
J.
, and
Wang
,
K. W.
,
2018
, “
Predicting Non-stationary and Stochastic Activation of Saddle-Node Bifurcation in Non-smooth Dynamical Systems
,”
Nonlinear Dyn.
,
93
(
2
), pp.
251
258
.
40.
Hansen
,
J.
, and
Penland
,
C.
,
2006
, “
Efficient Approximate Techniques for Integrating Stochastic Differential Equations
,”
Mon. Weather Rev.
,
134
(
10
), pp.
3006
3014
.
41.
Mukaka
,
M.
,
2012
, “
A Guide to Appropriate Use of Correlation Coefficient in Medical Research
,”
Malawi Med. J.
,
24
(
3
), pp.
69
71
.
42.
Dykman
,
M.
,
Mannella
,
R.
,
McClintock
,
P.
, and
Stocks
,
N.
,
1992
, “
Phase Shifts in Stochastic Resonance
,”
Phys. Rev. Lett.
,
68
(
20
), pp.
2985
2988
.
43.
Chapeau-Blondeau
,
F.
, and
Godivier
,
X.
,
1997
, “
Theory of Stochastic Resonance in Signal Transmission by Static Nonlinear Systems
,”
Phys. Rev. E
,
55
(
2
), pp.
1478
1495
.
44.
Duan
,
F.
,
Chapeau-Blondeau
,
F.
, and
Abbott
,
D.
,
2008
, “
Stochastic Resonance in a Parallel Array of Nonlinear Dynamical Elements
,”
Phys. Lett. A
,
372
(
13
), pp.
2159
2166
.
45.
McDonnell
,
M.
, and
Abbott
,
D.
,
2009
, “
What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology
,”
PLoS Comput. Biol.
,
5
(
5
), p.
e1000348
.
46.
Behnia
,
A.
,
Chai
,
H.
, and
Shiotani
,
T.
,
2014
, “
Advanced Structural Health Monitoring of Concrete Structures With the Aid of Acoustic Emission
,”
Constr. Build. Mater.
,
65
, pp.
282
302
.
47.
Nair
,
A.
, and
Cai
,
C.
,
2010
, “
Acoustic Emission Monitoring of Bridges: Review and Case Studies
,”
Eng. Struct.
,
32
(
6
), pp.
1704
1714
.
48.
Eaton
,
M.
,
Pullin
,
R.
, and
Holford
,
K.
,
2012
, “
Towards Improved Damage Location Using Acoustic Emission
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
226
(
9
), pp.
2141
2153
.
49.
Inasaki
,
I.
,
1998
, “
Application of Acoustic Emission Sensor for Monitoring Machining Processes
,”
Ultrasonics
,
26
(
1–5
), pp.
273
281
.
50.
Li
,
X.
,
2002
, “
A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning
,”
Int. J. Mach. Tools Manuf.
,
42
(
2
), pp.
157
165
.
51.
Lédeczi
,
Á.
,
Hay
,
T.
,
Volgyesi
,
P.
,
Hay
,
D.
,
Nádas
,
A.
, and
Jayaraman
,
S.
,
2009
, “
Wireless Acoustic Emission Sensor Network for Structural Monitoring
,”
IEEE Sens. J.
,
9
(
11
), pp.
1370
1377
.
52.
Tan
,
A.
,
Kaphle
,
M.
, and
Thambiratnam
,
D.
,
2009
, “
Structural Health Monitoring of Bridges Using Acoustic Emission Technology
,”
8th International Conference on Reliability, Maintainability and Safety, 2009 (ICRMS 2009)
,
Chengdu, China
,
July 20–24
, pp.
839
843
.
53.
A. E976-99
,
2009
,
Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response
,
American Society for Testing and Materials
.
54.
Tamaševičius
,
A.
,
Mykolaitis
,
G.
,
Pyragas
,
V.
, and
Pyragas
,
K.
,
2007
, “
Delayed Feedback Control of Periodic Orbits Without Torsion in Nonautonomous Chaotic Systems: Theory and Experiment
,”
Phys. Rev. E
,
76
(
2
), p.
026203
.
55.
Kim
,
J.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Enhancing Structural Damage Identification Robustness to Noise and Damping With Integrated Bistable and Adaptive Piezoelectric Circuitry
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011003
.
56.
Kim
,
J.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2016
, “
Predicting Non-stationary and Stochastic Activation of Saddle-Node Bifurcation
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011009
.
57.
Kim
,
J.
, and
Wang
,
K. W.
,
2019
, “
Electromechanical Impedance-Based Damage Identification Enhancement Using Bistable and Adaptive Piezoelectric Circuitry
,”
Struct. Health Monit.
,
18
(
4
), pp.
1268
1281
.
58.
Yang
,
K.
,
Zhang
,
Z.
,
Zhang
,
Y.
, and
Huang
,
H.
,
2019
, “
High-Resolution Monitoring of Aerospace Structure Using the Bifurcation of a Bistable Nonlinear Circuit With Tunable Potential-Well Depth
,”
Aerosp. Sci. Technol.
,
87
, pp.
98
109
.
59.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
John Wiley & Sons
,
Hoboken, NJ
.
60.
Harmer
,
G.
,
Davis
,
B.
, and
Abbott
,
D.
,
2002
, “
A Review of Stochastic Resonance: Circuits and Measurement
,”
IEEE Trans. Instrum. Meas.
,
51
(
2
), pp.
299
309
.
61.
Berglund
,
N.
, and
Gentz
,
B.
,
2006
,
Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.