Abstract

Fractal lattice is a kind of lattices with multifunctional physical characteristics and superior mechanical properties. The wave propagation of the triangular lattice with Koch fractal is calculated by the finite element method and Bloch theorem. The effects of the iteration number on the band gaps and the band edge modes are studied. The finite element software was used to simulate the dynamic response of the triangular lattice with Koch fractal for verifying the vibration suppression performance. The results show that the triangular lattice with Koch fractal can produce multiple and low-frequency band gaps. As an increase of the iteration number, the band gap gradually shifts to a lower frequency. By comparing and analyzing the band edge modes and the eigenmodes of Koch fractal, the mechanisms of the band gaps within the low-frequency ranges are analyzed and discussed in detail. Additionally, the band edge modes exhibit similar vibration modes. Finally, the simulation results of the finite lattice verify the broadband vibration suppression performance of the triangular lattice with Koch fractal. This work provides insights into the lattice dynamic behavior adjusted by Koch fractal, which is beneficial to the periodic lattice for suppressing vibration in engineering applications.

References

1.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices
,”
Adv. Eng. Mater.
,
21
(
10
), p.
1900524
.
2.
Ebrahimi
,
H.
,
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
, and
Vaziri
,
A.
,
2017
, “
Lattice Materials With Reversible Foldability
,”
Adv. Eng. Mater.
,
19
(
2
), p.
1600646
.
3.
Tancogne-Dejean
,
T.
,
Diamantopoulou
,
M.
,
Gorji
,
M. B.
,
Bonatti
,
C.
, and
Mohr
,
D.
,
2018
, “
3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness
,”
Adv. Mater.
,
30
(
45
), p.
1803334
.
4.
Zhao
,
P.
,
Zhang
,
K.
,
Zhao
,
C.
, and
Deng
,
Z.
,
2021
, “
On the Wave Propagation Properties and Poisson’s Ratio of the Star-3/6 Structures
,”
Compos. Struct.
,
270
, p.
114089
.
5.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
(
1
), pp.
125
139
.
6.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.
7.
Yin
,
S.
,
Chen
,
H.
,
Li
,
J.
,
Yu
,
T. X.
, and
Xu
,
J.
,
2019
, “
Effects of Architecture Level on Mechanical Properties of Hierarchical Lattice Materials
,”
Int. J. Mech. Sci.
,
157–158
, pp.
282
292
.
8.
Gross
,
A.
,
Pantidis
,
P.
,
Bertoldi
,
K.
, and
Gerasimidis
,
S.
,
2019
, “
Correlation Between Topology and Elastic Properties of Imperfect Truss-Lattice Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
577
598
.
9.
Bacigalupo
,
A.
, and
Lepidi
,
M.
,
2018
, “
Acoustic Wave Polarization and Energy Flow in Periodic Beam Lattice Materials
,”
Int. J. Solids Struct.
,
147
, pp.
183
203
.
10.
Zhang
,
K.
,
Ge
,
M.-H.
,
Zhao
,
C.
,
Deng
,
Z.-C.
, and
Xu
,
X.-J.
,
2019
, “
Free Vibration of Nonlocal Timoshenko Beams Made of Functionally Graded Materials by Symplectic Method
,”
Composites Part B: Engineering
,
156
, pp.
174
184
.
11.
Wang
,
S.
,
Ma
,
Y.
,
Deng
,
Z.
,
Zhang
,
K.
, and
Dai
,
S.
,
2020
, “
Implementation of an Elastoplastic Constitutive Model for 3D-Printed Materials Fabricated by Stereolithography
,”
Addit. Manuf.
,
33
, p.
101104
.
12.
Wagner
,
M.
,
Chen
,
T.
, and
Shea
,
K.
,
2017
, “
Large Shape Transforming 4D Auxetic Structures
,”
3D Printing Addit. Manuf.
,
4
(
3
), pp.
133
142
.
13.
Tao
,
R.
,
Xi
,
L.
,
Wu
,
W.
,
Li
,
Y.
,
Liao
,
B.
,
Liu
,
L.
,
Leng
,
J.
, and
Fang
,
D.
,
2020
, “
4D Printed Multi-Stable Metamaterials With Mechanically Tunable Performance
,”
Compos. Struct.
,
252
, p.
112663
.
14.
Ajdari
,
A.
,
Jahromi
,
B. H.
,
Papadopoulos
,
J.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2012
, “
Hierarchical Honeycombs With Tailorable Properties
,”
Int. J. Solids Struct.
,
49
(
11–12
), pp.
1413
1419
.
15.
Rayneau-Kirkhope
,
D.
,
Mao
,
Y.
, and
Farr
,
R.
,
2012
, “
Ultralight Fractal Structures From Hollow Tubes
,”
Phys. Rev. Lett.
,
109
(
20
), p.
204301
.
16.
Song
,
F.
,
Zhou
,
J.
,
Xu
,
X.
,
Xu
,
Y.
, and
Bai
,
Y.
,
2008
, “
Effect of a Negative Poisson Ratio in the Tension of Ceramics
,”
Phys. Rev. Lett.
,
100
(
24
), p.
245502
.
17.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
,
Hamouda
,
A. S.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
, “
Hierarchical Honeycomb Auxetic Metamaterials
,”
Sci. Rep.
,
5
(
1
), pp.
1
8
.
18.
Zhang
,
K.
,
Zhao
,
P.
,
Zhao
,
C.
,
Hong
,
F.
, and
Deng
,
Z.
,
2020
, “
Study on the Mechanism of Band gap and Directional Wave Propagation of the Auxetic Chiral Lattices
,”
Compos. Struct.
,
238
, p.
111952
.
19.
Mizzi
,
L.
, and
Spaggiari
,
A.
,
2020
, “
Lightweight Mechanical Metamaterials Designed Using Hierarchical Truss Elements
,”
Smart Mater. Struct.
,
29
(
10
), p.
105036
.
20.
Chen
,
Y.
, and
Wang
,
L.
,
2015
, “
Multiband Wave Filtering and Waveguiding in Bio-Inspired Hierarchical Composites
,”
Extreme Mech. Lett.
,
5
, pp.
18
24
.
21.
Sun
,
Y.
, and
Pugno
,
N. M.
,
2013
, “
In Plane Stiffness of Multifunctional Hierarchical Honeycombs With Negative Poisson’s Ratio Sub-Structures
,”
Compos. Struct.
,
106
, pp.
681
689
.
22.
Zhang
,
K.
,
Zhao
,
C.
,
Zhao
,
P.
,
Luo
,
J.
, and
Deng
,
Z.
,
2020
, “
Wave Propagation Properties of Rotationally Symmetric Lattices With Curved Beams
,”
J. Acoust. Soc. Am.
,
148
(
3
), pp.
1567
1584
.
23.
Côté
,
F.
,
Russell
,
B. P.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2009
, “
The Through-Thickness Compressive Strength of a Composite Sandwich Panel With a Hierarchical Square Honeycomb Sandwich Core
,”
ASME J. Appl. Mech.
,
76
(
6
), p.
061004
.
24.
Wang
,
Y.
,
Zhang
,
Z.
,
Xue
,
X.
, and
Zhang
,
L.
,
2019
, “
Free Vibration Analysis of Composite Sandwich Panels With Hierarchical Honeycomb Sandwich Core
,”
Thin-Walled Struct.
,
145
, p.
106425
.
25.
Tsang
,
H. H.
,
Tse
,
K. M.
,
Chan
,
K. Y.
,
Lu
,
G.
, and
Lau
,
A. K. T.
,
2019
, “
Energy Absorption of Muscle-Inspired Hierarchical Structure: Experimental Investigation
,”
Compos. Struct.
,
226
, p.
111250
.
26.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2012
, “
Bioinspired, Mechanical, Deterministic Fractal Model for Hierarchical Suture Joints
,”
Phys. Rev. E
,
85
(
3
), p.
031901
.
27.
Barthelat
,
F.
,
Tang
,
H.
,
Zavattieri
,
P.
,
Li
,
C.
, and
Espinosa
,
H.
,
2007
, “
On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure
,”
J. Mech. Phys. Solids
,
55
(
2
), pp.
306
337
.
28.
Wang
,
J.
,
Wang
,
G.
,
Feng
,
X.
,
Kitamura
,
T.
,
Kang
,
Y.
,
Yu
,
S.
, and
Qin
,
Q.
,
2013
, “
Hierarchical Chirality Transfer in the Growth of Towel Gourd Tendrils
,”
Sci. Rep.
,
3
, pp.
1
7
.
29.
Pan
,
N.
,
2014
, “
Exploring the Significance of Structural Hierarchy in Material Systems—A Review
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021302
.
30.
Fan
,
H.
,
Jin
,
F.
, and
Fang
,
D.
,
2008
, “
Mechanical Properties of Hierarchical Cellular Materials. Part I: Analysis
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3380
3387
.
31.
Taylor
,
C. M.
,
Smith
,
C. W.
,
Miller
,
W.
, and
Evans
,
K. E.
,
2011
, “
The Effects of Hierarchy on the in-Plane Elastic Properties of Honeycombs
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1330
1339
.
32.
Xu
,
Y. L.
,
Tian
,
X. G.
, and
Chen
,
C. Q.
,
2012
, “
Band Structures of two Dimensional Solid/air Hierarchical Phononic Crystals
,”
Phys. B
,
407
(
12
), pp.
1995
2001
.
33.
Gao
,
N.
,
Wu
,
J. H.
, and
Jing
,
L.
,
2015
, “
Research on the Band Gaps of the Two-Dimensional Sierpinski Fractal Phononic Crystals
,”
Mod. Phys. Lett. B
,
29
(
23
), p.
1550134
.
34.
Zhao
,
P.
,
Zhang
,
K.
,
Zhao
,
C.
,
Qi
,
L.
, and
Deng
,
Z.
,
2021
, “
In-Plane Wave Propagation Analysis for Waveguide Design of Hexagonal Lattice With Koch Snowflake
,”
Int. J. Mech. Sci.
,
209
, p.
106724
.
35.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ghosh
,
R.
,
Mahdi
,
E.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
, “
Honeycomb Phononic Crystals With Self-Similar Hierarchy
,”
Phys. Rev. B
,
92
(
10
), p.
104304
.
36.
Mandelbrot
,
B. B.
,
1983
,
The Fractal Geometry of Nature
,
WH freeman
,
New York
.
37.
Zhao
,
P.
,
Zhang
,
K.
, and
Deng
,
Z.
,
2020
, “
Elastic Wave Propagation in Lattice Metamaterials With Koch Fractal
,”
Acta Mech. Solida Sin.
,
33
(
5
), pp.
600
611
.
38.
Lim
,
Q. J.
,
Wang
,
P.
,
Koh
,
S. J. A.
,
Khoo
,
E. H.
, and
Bertoldi
,
K.
,
2015
, “
Wave Propagation in Fractal-Inspired Self-Similar Beam Lattices
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221911
.
39.
Zhu
,
Z.
,
Deng
,
Z.
,
Huang
,
B.
, and
Du
,
J.
,
2019
, “
Elastic Wave Propagation in Triangular Chiral Lattices: Geometric Frustration Behavior of Standing Wave Modes
,”
Int. J. Solids Struct.
,
158
, pp.
40
51
.
40.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.
41.
Liu
,
W.
,
Chen
,
J.
, and
Su
,
X.
,
2012
, “
Local Resonance Phononic Band Gaps in Modified Two-Dimensional Lattice Materials
,”
Acta Mech. Sin.
,
28
(
3
), pp.
659
669
.
42.
Huang
,
J.
,
Ruzzene
,
M.
, and
Chen
,
S.
,
2017
, “
Analysis of in-Plane Wave Propagation in Periodic Structures With Sierpinski-Carpet Unit Cells
,”
J. Sound Vib.
,
395
, pp.
127
141
.
You do not currently have access to this content.