Abstract

Acoustic radiation from stiffened double concentric large cylindrical shells with periodic cavities is analytically examined in the medium and high frequency range using the Sommerfeld–Watson transform. Creeping wave acoustic model of the stiffened double cylindrical shells in the shadow, penumbra, and illuminated regions is established by the residue theorem. An asymptotic expression of far-field acoustic pressure is derived in the geometrical acoustic zone according to the stationary phase method. Sound field of the bare or stiffened double cylindrical shells with annular fluid is determined by the creeping wave poles in the broad circumferential region. Mechanisms of creeping wave propagation through the stiffened double cylindrical shells are shown. There are a great many elastic and acoustic waves that cannot transmit through the annular fluid, annular bulkheads, and periodic cavities with a moderate gap between the double circular cylindrical shells. Acoustic boundary layer theories are proposed to describe sound propagation through the annular fluid and bulkheads for the creeping waves.

References

1.
Junger
,
M. C.
, and
Feit
,
D.
,
1986
,
Sound, Structures, and Their Interactions
,
MIT Press
,
Cambridge, MA
.
2.
Doolittle
,
R. D.
, and
Überall
,
H.
,
1966
, “
Sound Scattering by Elastic Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
39
(
2
), pp.
272
275
.
3.
Doolittle
,
R. D.
,
Überall
,
H.
, and
Uginčius
,
P.
,
1968
, “
Sound Scattering by Elastic Cylinders
,”
J. Acoust. Soc. Am.
,
43
(
1
), pp.
1
14
.
4.
Uginčius
,
P.
, and
Überall
,
H.
,
1968
, “
Creeping-Wave Analysis of Acoustic Scattering by Elastic Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
43
(
5
), pp.
1025
1035
. .
5.
Brill
,
D.
, and
Überall
,
H.
,
1971
, “
Acoustic Waves Transmitted Through Solid Elastic Cylinders
,”
J. Acoust. Soc. Am.
,
50
(
3B
), pp.
921
939
.
6.
Dickey
,
J. W.
,
Nixon
,
D. A.
, and
D’Archangelo
,
J. M.
,
1983
, “
Acoustic High-Frequency Scattering by Elastic Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
74
(
1
), pp.
294
304
.
7.
Rumerman
,
M. L.
,
1991
, “
Increased Accuracy in the Application of the Sommerfeld-Watson Transformation to Acoustic Scattering From Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
90
(
5
), pp.
2739
2750
.
8.
Rumerman
,
M. L.
,
1992
, “
Application of the Sommerfeld-Watson Transformation to Scattering of Acoustic Waves Obliquely Incident Upon Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
91
(
5
), pp.
2502
2509
.
9.
Gaunaurd
,
G. C.
,
1977
, “
High-Frequency Acoustic Scattering From Submerged Cylindrical Shells Coated With Viscoelastic Absorbing Layers
,”
J. Acoust. Soc. Am.
,
62
(
3
), pp.
503
512
.
10.
Danila
,
E. B.
,
Conoir
,
J. M.
, and
Izbicki
,
J. L.
,
1995
, “
The Generalized Debye Series Expansion: Treatment of the Concentric and Nonconcentric Cylindrical Fluid-Fluid Interfaces
,”
J. Acoust. Soc. Am.
,
98
(
6
), pp.
3326
3342
.
11.
Felsen
,
L. B.
,
Ho
,
J. M.
, and
Lu
,
I. T.
,
1990
, “
Three-Dimensional Green’s Function for Fluid-Loaded Thin Elastic Cylindrical Shell: Formulation and Solution
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
543
553
.
12.
Felsen
,
L. B.
,
Ho
,
J. M.
, and
Lu
,
I. T.
,
1990
, “
Three-Dimensional Green’s Function for Fluid-Loaded Thin Elastic Cylindrical Shell: Alternative Representations and Ray Acoustic Forms
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
554
569
.
13.
Lecable
,
C.
,
Conoir
,
J. M.
, and
Lenoir
,
O.
,
2001
, “
Acoustic Radiation of Cylindrical Elastic Shells Subjected to a Point Source: Investigation in Terms of Helical Acoustic Rays
,”
J. Acoust. Soc. Am.
,
110
(
4
), pp.
1783
1791
.
14.
Williams
,
K. L.
, and
Marston
,
P. L.
,
1985
, “
Backscattering From an Elastic Sphere: Sommerfeld-Watson Transformation and Experimental Confirmation
,”
J. Acoust. Soc. Am.
,
78
(
3
), pp.
1093
1102
.
15.
Rumerman
,
M. L.
,
1993
, “
Increased Accuracy in the Application of the Sommerfeld-Watson Transformation to Scattering of Acoustic Waves From Spherical Shells
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
1110
1120
.
16.
Leppington
,
F. G.
,
1967
, “
Creeping Waves in the Shadow of an Elliptic Cylinder
,”
IMA J. Appl. Math.
,
3
(
4
), pp.
388
402
.
17.
Harbold
,
M. L.
, and
Steinberg
,
B. N.
,
1969
, “
Direct Experimental Verification of Creeping Waves
,”
J. Acoust. Soc. Am.
,
45
(
3
), pp.
592
603
.
18.
Franz
,
V. W.
,
1954
, “
Über die Greenschen Funktionen des Zylinders und der Kugel
,”
Zeitschrift für Naturforschung
,
9a
(
9
), pp.
705
716
.
19.
Sensiper
,
S.
,
Sterns
,
W.
, and
Taylor
,
T.
,
1952
, “
A Further Study of the Patterns of Single Slots on Circular Conducting Cylinders
,”
Trans. IRE Professional Group Antennas Propagation
,
3
, pp.
240
250
.
20.
Sensiper
,
S.
,
1957
, “
Cylindrical Radio Waves
,”
IRE Trans. Antennas Propagation
,
5
(
1
), pp.
56
70
.
21.
Bailin
,
L.
, and
Spellmire
,
R.
,
1957
, “
Convergent Representations for the Radiation Fields From Slots in Large Circular Cylinders
,”
IRE Trans. Antennas Propagation
,
5
(
4
), pp.
374
383
.
22.
Streifer
,
W.
, and
Kodis
,
R. D.
,
1964
, “
On the Solution of a Transcendental Equation Arising in the Theory of Scattering by a Dielectric Cylinder
,”
Q. Appl. Math.
,
21
(
4
), pp.
285
298
.
23.
Paknys
,
R.
, and
Jackson
,
D. R.
,
2005
, “
The Relation Between Creeping Waves, Leaky Waves, and Surface Waves
,”
IEEE Trans. Antennas Propagation
,
53
(
3
), pp.
898
907
.
24.
Wait
,
J. R.
,
1959
,
Electromagnetic Radiation From Cylindrical Structures
,
Pergamon Press
,
New York
.
25.
Regge
,
T.
,
1959
, “
Introduction to Complex Orbital Momenta
,”
Nuovo Cimento
,
14
(
5
), pp.
951
976
.
26.
Drechsler
,
W.
,
1970
, “
Complex Angular Momentum Theory in Particle Physics
,”
Fortschritte der Physik
,
18
(
7–8
), pp.
305
448
.
27.
Canfora
,
F.
,
2016
, “
Complex Angular Momenta Approach for Scattering Problems in the Presence of Both Monopoles and Short Range Potentials
,”
Phys. Rev. D
,
94
(
8
), p.
085030
.
28.
Bleistein
,
N.
,
1984
,
Mathematical Methods for Wave Phenomena
,
Academic Press
,
Orlando, FL
.
29.
Streifer
,
W.
,
1964
, “
Creeping Wave Propagation Constants for Impedance Boundary Conditions
,”
IEEE Trans. Antennas Propagation
,
12
(
6
), pp.
764
766
.
30.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
, “
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,”
National Bureau of Standards
,
Washington, DC.
You do not currently have access to this content.