Abstract

Topological acoustics has recently witnessed a spurt in research activity, owing to their unprecedented properties transcending typical wave phenomena. In recent years, the use of coupled arrays of acoustic chambers has gained popularity in designing topological acoustic systems. In their common form, an array of acoustic chambers with relatively large volume is coupled via narrow channels. Such configuration is generally modeled as a full three-dimensional system, requiring extended computational time for simulating its harmonic response. To this end, this article establishes a comprehensive mathematical treatment of the use of electroacoustic analogies for designing topological acoustic lattices. The potential of such analytical approach is demonstrated via two types of topological systems: (i) edge states with quantized winding numbers in an acoustic diatomic lattice and (ii) valley Hall transition in an acoustic honeycomb lattice that leads to robust waveguiding. In both cases, the established analytical approach exhibits an excellent agreement with the full three-dimensional model, whether in dispersion analyses or the response of an acoustic system with a finite number of cells. The established analytical framework is invaluable for designing a variety of acoustic topological insulators with minimal computational cost.

References

1.
Zhang
,
X.
,
Xiao
,
M.
,
Cheng
,
Y.
,
Lu
,
M.-H.
, and
Christensen
,
J.
,
2018
, “
Topological Sound
,”
Commun. Phys.
,
1
(
1
), p.
97
.
2.
Ma
,
G.
,
Xiao
,
M.
, and
Chan
,
C. T.
,
2019
, “
Topological Phases in Acoustic and Mechanical Systems
,”
Nat. Rev. Phys.
,
1
(
4
), pp.
281
294
.
3.
Lu
,
J.
,
Qiu
,
C.
,
Ye
,
L.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
,
2017
, “
Observation of Topological Valley Transport of Sound in Sonic Crystals
,”
Nat. Phys.
,
13
(
4
), pp.
369
374
.
4.
He
,
C.
,
Ni
,
X.
,
Ge
,
H.
,
Sun
,
X.-C.
,
Chen
,
Y.-B.
,
Lu
,
M.-H.
,
Liu
,
X.-P.
, and
Chen
,
Y.-F.
,
2016
, “
Acoustic Topological Insulator and Robust One-Way Sound Transport
,”
Nat. Phys.
,
12
(
12
), pp.
1124
1129
.
5.
Xia
,
J.-P.
,
Jia
,
D.
,
Sun
,
H.-X.
,
Yuan
,
S.-Q.
,
Ge
,
Y.
,
Si
,
Q.-R.
, and
Liu
,
X.-J.
,
2018
, “
Programmable Coding Acoustic Topological Insulator
,”
Adv. Mater.
,
30
(
46
), p.
1805002
.
6.
He
,
H.
,
Qiu
,
C.
,
Ye
,
L.
,
Cai
,
X.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
,
2018
, “
Topological Negative Refraction of Surface Acoustic Waves in a Weyl Phononic Crystal
,”
Nature
,
560
(
7716
), pp.
61
64
.
7.
Vila
,
J.
,
Pal
,
R. K.
, and
Ruzzene
,
M.
,
2017
, “
Observation of Topological Valley Modes in an Elastic Hexagonal Lattice
,”
Phys. Rev. B
,
96
(
13
), p.
134307
.
8.
Liu
,
T.-W.
, and
Semperlotti
,
F.
,
2018
, “
Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides
,”
Phys. Rev. Appl.
,
9
(
1
), p.
014001
.
9.
Zhu
,
H.
,
Liu
,
T.-W.
, and
Semperlotti
,
F.
,
2018
, “
Design and Experimental Observation of Valley-Hall Edge States in Diatomic-Graphene-Like Elastic Waveguides
,”
Phys. Rev. B
,
97
(
17
), p.
174301
.
10.
Chaunsali
,
R.
,
Chen
,
C.-W.
, and
Yang
,
J.
,
2018
, “
Subwavelength and Directional Control of Flexural Waves in Zone-Folding Induced Topological Plates
,”
Phys. Rev. B
,
97
(
5
), p.
054307
.
11.
Serra-Garcia
,
M.
,
Peri
,
V.
,
Süsstrunk
,
R.
,
Bilal
,
O. R.
,
Larsen
,
T.
,
Villanueva
,
L. G.
, and
Huber
,
S. D.
,
2018
, “
Observation of a Phononic Quadrupole Topological Insulator
,”
Nature
,
555
(
7696
), pp.
342
345
.
12.
Chen
,
H.
,
Yao
,
L.
,
Nassar
,
H.
, and
Huang
,
G.
,
2019
, “
Mechanical Quantum Hall Effect in Time-Modulated Elastic Materials
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044029
.
13.
Fan
,
H.
,
Xia
,
B.
,
Tong
,
L.
,
Zheng
,
S.
, and
Yu
,
D.
,
2019
, “
Elastic Higher-Order Topological Insulator With Topologically Protected Corner States
,”
Phys. Rev. Lett.
,
122
(
20
), p.
204301
.
14.
Ni
,
X.
,
Gorlach
,
M. A.
,
Alu
,
A.
, and
Khanikaev
,
A. B.
,
2017
, “
Topological Edge States in Acoustic Kagome Lattices
,”
New. J. Phys.
,
19
(
5
), p.
055002
.
15.
Khanikaev
,
A. B.
,
Fleury
,
R.
,
Mousavi
,
S. H.
, and
Alù
,
A.
,
2015
, “
Topologically Robust Sound Propagation in an Angular-Momentum-Biased Graphene-Like Resonator Lattice
,”
Nat. Commun.
,
6
(
1
), p.
8260
.
16.
Yang
,
Y.
,
Yang
,
Z.
, and
Zhang
,
B.
,
2018
, “
Acoustic Valley Edge States in a Graphene-Like Resonator System
,”
J. Appl. Phys.
,
123
(
9
), p.
091713
.
17.
Gao
,
M.
,
Wu
,
S.
, and
Mei
,
J.
,
2020
, “
Acoustic Topological Devices Based on Emulating and Multiplexing of Pseudospin and Valley Indices
,”
New. J. Phys.
,
22
(
1
), p.
013016
.
18.
Ni
,
X.
,
Chen
,
K.
,
Weiner
,
M.
,
Apigo
,
D. J.
,
Prodan
,
C.
,
Alu
,
A.
,
Prodan
,
E.
, and
Khanikaev
,
A. B.
,
2019
, “
Observation of Hofstadter Butterfly and Topological Edge States in Reconfigurable Quasi-Periodic Acoustic Crystals
,”
Commun. Phys.
,
2
(
1
), pp.
1
7
.
19.
Xue
,
H.
,
Yang
,
Y.
,
Gao
,
F.
,
Chong
,
Y.
, and
Zhang
,
B.
,
2019
, “
Acoustic Higher-Order Topological Insulator on a Kagome Lattice
,”
Nat. Mater.
,
18
(
2
), pp.
108
112
.
20.
Qi
,
Y.
,
Qiu
,
C.
,
Xiao
,
M.
,
He
,
H.
,
Ke
,
M.
, and
Liu
,
Z.
,
2020
, “
Acoustic Realization of Quadrupole Topological Insulators
,”
Phys. Rev. Lett.
,
124
(
20
), p.
206601
.
21.
Ni
,
X.
,
Li
,
M.
,
Weiner
,
M.
,
Alù
,
A.
, and
Khanikaev
,
A. B.
,
2020
, “
Demonstration of a Quantized Acoustic Octupole Topological Insulator
,”
Nat. Commun.
,
11
(
1
), p.
2108
.
22.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Onset of Oscillations in Traveling Wave Thermo-Acoustic-Piezo-Electric Harvesters Using Circuit Analogy and Spice Modeling
,”
ASME J. Dyn. Syst. Meas. Control.
,
136
(
6
), p.
061005
.
23.
Zhang
,
S.
,
2010
,
Acoustic Metamaterial Design and Applications
, University of Illinois at Urbana-Champaign,
ProQuest Dissertations Publishing
,
Ann Arbor, MI
.
24.
Roshwalb
,
A.
,
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Performance of a Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: An Electrical Circuit Analogy Approach
,”
J. Intell. Mater. Syst. Struct.
,
25
(
11
), pp.
1372
1383
.
25.
Akl
,
W.
, and
Baz
,
A.
,
2010
, “
Multi-Cell Active Acoustic Metamaterial With Programmable Bulk Modulus
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
541
556
.
26.
Akl
,
W.
, and
Baz
,
A.
,
2012
, “
Multicell Active Acoustic Metamaterial With Programmable Effective Densities
,”
ASME J. Dyn. Syst. Meas. Control.
,
134
(
6
), p.
061001
.
27.
Guan
,
A.-Y.
,
Yang
,
Z.-Z.
,
Zou
,
X.-Y.
, and
Cheng
,
J.-C.
,
2021
, “
Method to Derive the Hamiltonian of Acoustic Topological Crystalline Insulators
,”
Phys. Rev. Appl.
,
15
(
6
), p.
064056
.
28.
Al Ba’ba’a
,
H.
,
Callanan
,
J.
,
Nouh
,
M.
, and
Singh
,
T.
,
2018
, “
Band Gap Synthesis in Elastic Monatomic Lattices Via Input Shaping
,”
Meccanica
,
53
(
11–12
), pp.
3105
3122
.
29.
Yuan
,
J.
,
2007
, “
Active Helmholtz Resonator With Positive Real Impedance
,”
ASME J. Vib. Acoust.
,
129
(
1
), pp.
94
100
.
30.
Alster
,
M.
,
1972
, “
Improved Calculation of Resonant Frequencies of Helmholtz Resonators
,”
J. Sound. Vib.
,
24
(
1
), pp.
63
85
.
31.
Xu
,
M.
,
Selamet
,
A.
, and
Kim
,
H.
,
2010
, “
Dual Helmholtz Resonator
,”
Appl. Acoust.
,
71
(
9
), pp.
822
829
.
32.
Raichel
,
D. R.
,
2006
,
The Science and Applications of Acoustics
,
Springer Science & Business Media
,
New York
.
33.
Wibulswas
,
P.
,
1966
, “
Laminar-Flow Heat-Transfer in Non-Circular Ducts
,” Ph.D. thesis,
University of London
.
34.
Chen
,
H.
,
Nassar
,
H.
, and
Huang
,
G. L.
,
2018
, “
A Study of Topological Effects in 1D and 2D Mechanical Lattices
,”
J. Mech. Phys. Solids.
,
117
, pp.
22
36
.
35.
Asbóth
,
J. K.
,
Oroszlány
,
L.
, and
Pályi
,
A.
,
2016
,
A Short Course on Topological Insulators
, Vol.
919
,
Lecture Notes in Physics
.
Springer International Publishing
,
Cham
.
36.
Al Ba’ba’a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2017
, “
Pole Distribution in Finite Phononic Crystals: Understanding Bragg-Effects Through Closed-Form System Dynamics
,”
J. Acoust. Soc. Am.
,
142
(
3
), pp.
1399
1412
.
37.
Fonseca
,
C. M.
,
2007
, “
The Characteristic Polynomial of Some Perturbed Tridiagonal K -Toeplitz Matrices 1
,”
Appl. Math. Sci.
,
1
(
2
), pp.
59
67
.
38.
Pal
,
R. K.
, and
Ruzzene
,
M.
,
2017
, “
Edge Waves in Plates With Resonators: An Elastic Analogue of the Quantum Valley Hall Effect
,”
New. J. Phys.
,
19
(
2
), p.
25001
.
39.
Al Ba’ba’a
,
H.
,
Yu
,
K.
, and
Wang
,
Q.
,
2020
, “
Elastically-Supported Lattices for Tunable Mechanical Topological Insulators
,”
Extreme Mech. Lett.
,
38
, p.
100758
.
40.
Tian
,
Z.
,
Shen
,
C.
,
Li
,
J.
,
Reit
,
E.
,
Bachman
,
H.
,
Socolar
,
J. E.
,
Cummer
,
S. A.
, and
Jun Huang
,
T.
,
2020
, “
Dispersion Tuning and Route Reconfiguration of Acoustic Waves in Valley Topological Phononic Crystals
,”
Nat. Commun.
,
11
(
1
), p.
762
.
41.
Riva
,
E.
,
Quadrelli
,
D. E.
,
Cazzulani
,
G.
, and
Braghin
,
F.
,
2018
, “
Tunable In-Plane Topologically Protected Edge Waves in Continuum Kagome Lattices
,”
J. Appl. Phys.
,
124
(
16
), p.
164903
.
You do not currently have access to this content.