Abstract

Aquatic animals commonly oscillate their fins, tails, or other structures to propel and control themselves in water. These elements are not perfectly rigid, so the interplay between their stiffness and the fluid loading dictates their dynamics. We examine the propulsive qualities of a tail-like flexible beam actuated by a dynamic moment over a range of frequencies and flow speeds. This is accomplished using the equations of fluid-immersed beams in combination with a set of tractable expressions for thrust and efficiency. We solve these expressions over the velocity–frequency plane and show that the flexible propulsor has regions of both positive and negative thrust. We also show the behavior of a sample underwater vehicle with fixed drag characteristics as an illustration of a realizable system.

References

1.
Lauder
,
G. V.
,
2010
, “Swimming Hydrodynamics: Ten Questions and the Technical Approaches Needed to Resolve Them,”
Animal Locomotion
,
Taylor
,
G. K.
,
Triantafyllou
,
M. S.
, and
C.
Tropea
, eds.,
Springer
,
Berlin
, pp.
3
15
.
2.
Van Buren
,
T.
,
Floryan
,
D.
, and
Smits
,
A. J.
,
2020
, “Bio-Inspired Underwater Propulsors,”
Bio-Inspired Structures and Design
,
Soboyejo
,
W.
, and
Daniel
,
L.
, eds.,
Cambridge University Press
,
Cambridge
, pp.
113
137
.
3.
Lighthill
,
M. J.
,
1969
, “
Hydromechanics of Aquatic Animal Propulsion
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
413
446
.
4.
Lauder
,
G. V.
,
Anderson
,
E. J.
,
Tangorra
,
J.
, and
Madden
,
P. G. A.
,
2007
, “
Fish Biorobotics: Kinematics and Hydrodynamics of Self-Propulsion
,”
J. Exp. Biol.
,
210
(
16
), pp.
2767
2780
.
5.
Lighthill
,
M. J.
,
1960
, “
Note on the Swimming of Slender Fish
,”
J. Fluid Mech.
,
9
(
2
), pp.
305
317
.
6.
Lighthill
,
M. J.
,
1971
, “
Large-Amplitude Elongated-Body Theory of Fish Locomotion
,”
Proc. R. Soc. Lond. Ser. B Biol. Sci.
,
179
(
1055
), pp.
125
138
.
7.
Wu
,
T. Y.-T.
,
1971
, “
Hydromechanics of Swimming Propulsion. Part 1. Swimming of a Two-Dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid
,”
J. Fluid Mech.
,
46
(
2
), pp.
337
355
.
8.
Koochesfahani
,
M. M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.
9.
Lewin
,
G. C.
, and
Haj-Hariri
,
H.
,
2003
, “
Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow
,”
J. Fluid Mech.
,
492
(
1
), pp.
339
362
.
10.
Hover
,
F. S.
,
Haugsdal
,
Ø.
, and
Triantafyllou
,
M. S.
,
2004
, “
Effect of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluids Struct.
,
19
(
1
), pp.
37
47
.
11.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.
12.
Zhu
,
R.
,
Wang
,
J.
,
Dong
,
H.
,
Quinn
,
D.
,
Bart-Smith
,
H.
,
Santo
,
V. D.
,
Wainwright
,
D.
, and
Lauder
,
G.
,
2019
, “
Computational Study of Fish-Shaped Panel With Simultaneously Heaving and Bending Motion
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
,
American Institute of Aeronautics and Astronautics
, p.
1655
.
13.
Park
,
H.
,
Park
,
Y.-J.
,
Lee
,
B.
,
Cho
,
K.-J.
, and
Choi
,
H.
,
2016
, “
Vortical Structures Around a Flexible Oscillating Panel for Maximum Thrust in a Quiescent Fluid
,”
J. Fluids Struct.
,
67
(
1
), pp.
241
260
.
14.
Yeh
,
P. D.
,
Li
,
Y.
, and
Alexeev
,
A.
,
2017
, “
Efficient Swimming Using Flexible Fins With Tapered Thickness
,”
Phys. Rev. Fluids
,
2
(
10
), p.
102101
.
15.
Dewey
,
P. A.
,
Boschitsch
,
B. M.
,
Moored
,
K. W.
,
Stone
,
H. A.
, and
Smits
,
A. J.
,
2013
, “
Scaling Laws for the Thrust Production of Flexible Pitching Panels
,”
J. Fluid Mech.
,
732
(
1
), pp.
29
46
.
16.
Riggs
,
P.
,
Bowyer
,
A.
, and
Vincent
,
J.
,
2010
, “
Advantages of a Biomimetic Stiffness Profile in Pitching Flexible Fin Propulsion
,”
J. Bionic Eng.
,
7
(
2
), pp.
113
119
.
17.
Richards
,
A. J.
, and
Oshkai
,
P.
,
2015
, “
Effect of the Stiffness, Inertia and Oscillation Kinematics on the Thrust Generation and Efficiency of an Oscillating-Foil Propulsion System
,”
J. Fluids Struct.
,
57
(
1
), pp.
357
374
.
18.
Morgansen
,
K. A.
,
Triplett
,
B. I.
, and
Klein
,
D. J.
,
2007
, “
Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles
,”
IEEE Trans. Robot.
,
23
(
6
), pp.
1184
1199
.
19.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1995
, “
An Efficient Swimming Machine
,”
Sci. Am.
,
272
(
3
), pp.
64
70
.
20.
Epps
,
B. P.
,
Valdivia y Alvarado
,
P.
,
Youcef-Toumi
,
K.
, and
Techet
,
A. H.
,
2009
, “
Swimming Performance of a Biomimetic Compliant Fish-Like Robot
,”
Exp. Fluids
,
47
(
6
), p.
927
.
21.
Ozmen Koca
,
G.
,
Korkmaz
,
D.
,
Bal
,
C.
,
Akpolat
,
Z. H.
, and
Ay
,
M.
,
2016
, “
Implementations of the Route Planning Scenarios for the Autonomous Robotic Fish With the Optimized Propulsion Mechanism
,”
Measurement
,
93
(
1
), pp.
232
242
.
22.
Lu
,
B.
,
Zhou
,
C.
,
Wang
,
J.
,
Fu
,
Y.
,
Cheng
,
L.
, and
Tan
,
M.
,
2022
, “
Development and Stiffness Optimization for a Flexible-Tail Robotic Fish
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
834
841
.
23.
Salazar
,
R.
,
Fuentes
,
V.
, and
Abdelkefi
,
A.
,
2018
, “
Classification of Biological and Bioinspired Aquatic Systems: A Review
,”
Ocean Eng.
,
148
(
1
), pp.
75
114
.
24.
Zuo
,
W.
,
Fish
,
F.
, and
Chen
,
Z.
,
2021
, “
Bio-Inspired Design, Modeling, and Control of Robotic Fish Propelled by a Double-Slider-Crank Mechanism Driven Tail
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
12
), p.
121005
.
25.
Katz
,
J.
, and
Weihs
,
D.
,
1978
, “
Hydrodynamic Propulsion by Large Amplitude Oscillation of an Airfoil With Chordwise Flexibility
,”
J. Fluid Mech.
,
88
(
3
), pp.
485
497
.
26.
Hoover
,
A. P.
,
Cortez
,
R.
,
Tytell
,
E. D.
, and
Fauci
,
L. J.
,
2018
, “
Swimming Performance, Resonance and Shape Evolution in Heaving Flexible Panels
,”
J. Fluid Mech.
,
847
(
1
), pp.
386
416
.
27.
Valdivia y Alvarado
,
P.
, and
Youcef-Toumi
,
K.
,
2005
, “
Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
3
13
.
28.
Hellum
,
A.
,
Mukherjee
,
R.
, and
Hull
,
A. J.
,
2011
, “
Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body
,”
J. Fluids Struct.
,
27
(
7
), pp.
1086
1096
.
29.
Hellum
,
A.
,
Mukherjee
,
R.
,
Bénard
,
A.
, and
Hull
,
A. J.
,
2013
, “
Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-Conveying Tail
,”
J. Fluids Struct.
,
36
(
1
), pp.
83
110
.
30.
Paidoussis
,
M. P.
,
1966
, “
Dynamics of Flexible Slender Cylinders in Axial Flow Part 2. Experiments
,”
J. Fluid Mech.
,
26
(
4
), pp.
737
751
.
31.
Hannoyer
,
M. J.
, and
Paidoussis
,
M. P.
,
1979
, “
Dynamics of Slender Tapered Beams With Internal or External Axial Flow—Part 1: Theory
,”
J. Appl. Mech.
,
46
(
1
), pp.
45
51
.
32.
Gregory
,
R. W.
,
Paidoussis
,
M. P.
, and
Hawthorne
,
W. R.
,
1966
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid II. Experiments
,”
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
293
(
1435
), pp.
528
542
.
33.
Quinn
,
D. B.
,
Lauder
,
G. V.
, and
Smits
,
A. J.
,
2014
, “
Scaling the Propulsive Performance of Heaving Flexible Panels
,”
J. Fluid Mech.
,
738
(
1
), pp.
250
267
.
34.
Kutin
,
J.
, and
Bajsić
,
I.
,
2014
, “
Fluid-Dynamic Loading of Pipes Conveying Fluid With a Laminar Mean-Flow Velocity Profile
,”
J. Fluids Struct.
,
50
(
10
), pp.
171
183
.
35.
Paidoussis
,
M. P.
,
2014
,
Fluid–Structure Interactions: Slender Structures and Axial Flow
, 2nd ed., Vol. 1,
Academic Press
,
Amsterdam
.
36.
Brennen
,
C. E.
,
1982
, “
A Review of Added Mass and Fluid Inertial Forces
,”
Naval Civil Engineering Laboratory
,
Port Hueneme, CA
, Technical CR82.010.
37.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill Series in Mechanical Engineering
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.