Graphical Abstract Figure

Hanging chain model

Graphical Abstract Figure

Hanging chain model

Close modal

Abstract

This work investigates the use of input shaping techniques for controlling oscillations in a chain suspended from an overhead crane, aiming to enhance crane operations without sacrificing speed or safety. The study focuses on two specific input shaping strategies: step-input and polynomial-input shapers. The step-input shaper applies discrete changes at determined intervals, whereas the polynomial-input shaper utilizes a continuous function to adjust the crane's input throughout its operation. Numerical simulations assess the effectiveness of these techniques in reducing oscillations across various vibration modes of the chain and examine their impact on overall system performance metrics such as maneuver time, kinetic energy, robustness, and operational smoothness. Results from comprehensive simulations indicate that both input shapers significantly eliminated residual vibrations found in time-reduced inputs. The polynomial-input shaper demonstrated enhanced performance in decreasing the residual kinetic energy, and it promoted smoother operation and better adaptability to variations in chain length.

References

1.
McCreesh
,
J. P.
,
Goodfellow
,
T. L.
, and
Seville
,
A. H.
,
1975
, “
Vibrations of a Hanging Chain of Discrete Links
,”
Am. J. Phys.
,
43
(
7
), pp.
646
648
.
2.
Levinson
,
D. A.
,
1977
, “
Natural Frequencies of a Hanging Chain
,”
Am. J. Phys.
,
45
(
7
), pp.
680
681
.
3.
Bailey
,
H.
,
2000
, “
Motion of a Hanging Chain After the Free End is Given an Initial Velocity
,”
Am. J. Phys.
,
68
(
8
), pp.
764
767
.
4.
d’Andréa-Novel
,
B.
, and
Coron
,
J.-M.
,
2000
, “
Exponential Stabilization of an Overhead Crane With Flexible Cable Via a Back-Stepping Approach
,”
Automatica
,
36
(
4
), pp.
587
593
.
5.
Damaren
,
C. J.
,
2000
, “
On the Dynamics and Control of Flexible Multibody Systems With Closed Loops
,”
Int. J. Rob. Res.
,
19
(
3
), pp.
238
253
.
6.
d’Andréa-Novel
,
B.
, and
Coron
,
J.-M.
,
2002
, “
Stabilization of an Overhead Crane With a Variable Length Flexible Cable
,”
J. Comput. Appl. Math.
,
21
(
1
), pp.
101
134
.
7.
Tiefenbacher
,
M.
,
Jakubek
,
S.
, and
Kozek
,
M.
,
2011
, “
Modeling and Identification of a Chain Pendulum
,”
The 2nd International Multiconference on Complexity, Informatics and Cybernetics
,
Orlando, FL
,
Mar. 27–30
, pp.
6
11
.
8.
He
,
W.
,
Zhang
,
S.
, and
Sam Ge
,
S.
,
2013
, “
Adaptive Control of a Flexible Crane System With the Boundary Output Constraint
,”
IEEE Trans. Ind. Electron.
,
61
(
8
), pp.
4126
4133
.
9.
Fatehi
,
M. H.
,
Eghtesad
,
M.
, and
Amjadifard
,
R.
,
2014
, “
Modelling and Control of an Overhead Crane System With a Flexible Cable and Large Swing Angle
,”
J. Low Freq. Noise Vib. Act. Control.
,
33
(
4
), pp.
395
409
.
10.
Cui
,
L.
, and
Zheng
,
D.
,
2018
, “
Visual Servoing of a Flexible Gantry Crane With a Sway Range Constraint
,”
IEEE Control Syst. Lett.
,
3
(
1
), pp.
138
143
.
11.
Al Ba'Ba'a
,
H.
,
Callanan
,
J.
, and
Nouh
,
M.
,
2019
, “
Emergence of Pseudo-Phononic Gaps in Periodically Architected Pendulums
,”
Front Mater
,
6
, p.
119
.
12.
d’Andréa-Novel
,
B.
,
Moyano
,
I.
, and
Rosier
,
L.
,
2019
, “
Finite-Time Stabilization of an Overhead Crane With a Flexible Cable
,”
Math. Control. Signals, Syst.
,
31
(
2
), pp.
1
19
.
13.
Sun
,
N.
,
Zhang
,
J.
,
Xin
,
X.
,
Yang
,
T.
, and
Fang
,
Y.
,
2019
, “
Nonlinear Output Feedback Control of Flexible Rope Crane Systems With State Constraints
,”
IEEE Access
,
7
, pp.
136193
136202
.
14.
Shen
,
P.-Y.
, and
Caverly
,
R. J.
,
2020
, “
Noncolocated Passivity-Based Control of a 2 DOF Tower Crane With a Flexible Hoist Cable
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
,
IEEE
, pp.
5046
5051
.
15.
Wijnand
,
M.
,
d’Andréa-Novel
,
B.
, and
Rosier
,
L.
,
2021
, “
Finite-Time Stabilization of an Overhead Crane With a Flexible Cable Submitted to an Affine Tension
,”
ESAIM: Control, Optim. Calc. Var.
,
27
, p.
94
.
16.
Artola
,
M.
,
Wynn
,
A.
, and
Palacios
,
R.
,
2021
, “
Modal-Based Nonlinear Model Predictive Control for 3-D Very Flexible Structures
,”
IEEE Trans. Automat. Control
,
67
(
5
), pp.
2145
2160
.
17.
Singh
,
T.
, and
Singhose
,
W.
,
2002
, “
Input Shaping/Time Delay Control of Maneuvering Flexible Structures
,”
Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301)
,
Anchorage, AK
,
May 8–10
, Vol.
3
,
IEEE
, pp.
1717
1731
.
18.
Masoud
,
Z. N.
, and
Alhazza
,
K. A.
,
2014
, “
Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021005
.
19.
Alhazza
,
K. A.
, and
Masoud
,
Z. N.
,
2016
, “
Waveform Command Shaping Control of Multimode Systems
,”
J. Sound Vib.
,
363
, pp.
126
140
.
20.
Masoud
,
Z.
,
Nazzal
,
M.
, and
Alhazza
,
K.
,
2016
, “
Multimode Input Shaping Control of Flexible Robotic Manipulators Using Frequency-Modulation
,”
Jordan J. Mech. Ind. Eng.
,
10
(
3
), pp.
179
188
.
21.
Alghanim
,
K. A.
,
Majeed
,
M. A.
, and
Alhazza
,
K. A.
,
2018
, “
Adjustable-Smooth Polynomial Command-Shaping Control With Linear Hoisting
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061013
.
22.
Khorshid
,
A.-F.
, and
Alghanim
,
B.
,
2021
, “
Command Shaping With Reduced Maneuvering Time for Crane Control
,”
J. Vib. Control
,
27
(
11–12
), pp.
1311
1323
.
23.
Chen
,
T.
, and
Shan
,
J.
,
2018
, “
Fixed-Time Consensus Control of Multiagent Systems Using Input Shaping
,”
IEEE Trans. Ind. Electron.
,
66
(
9
), pp.
7433
7441
.
24.
Chen
,
T.
,
Wang
,
Y.
,
Wen
,
H.
, and
Kang
,
J.
,
2023
, “
Autonomous Assembly of Multiple Flexible Spacecraft Using RRT* Algorithm and Input Shaping Technique
,”
Nonlinear Dyn.
,
111
(
12
), pp.
11223
11241
.
You do not currently have access to this content.